Conditional Probability

The conditional probability of an event A, given that event B has already occurred is given by;

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad \text { or } \quad P(A \mid B)=\frac{|A \cap B|}{|B|}
$$

Note: if $P(A \mid B)=P(A)$ then A and B are independent events

$$
\text { or } P(A \cap B)=P(A) \times P(B)
$$

e.g. (i) In a mixed language class, students study French, Latin and Japanese. The number of students who study each language are shown in the Venn diagram.

What is the probability that a student who studies Indonesian also studies French?

$$
P(\text { French } \mid \text { Japanese })=\frac{3}{10}
$$

(ii) Two boxes each contain four stones that differ only in colour.

Box 1 contains four black stones
Box 2 contains two black stones and two white stones
A box is chosen at random and one stone is randomly drawn from it
a) What is the probability that the randomly drawn stone is black

$$
\begin{aligned}
& P(\text { black })=\frac{1}{2}+\frac{1}{2} \times \frac{2}{4} \quad \text { OR } \quad P(\text { black })=\frac{6}{8} \\
& =\frac{3}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

b) It is not known from which box the stone has been drawn.

Given that the stone drawn is black, what is the probability that it was drawn from Box 1?

$$
\begin{aligned}
P(\text { Box 1 } \mid \text { black }) & =\frac{P(\text { black and Box } 1)}{P(\text { black })} \\
& =\frac{\frac{1}{2} \times 1}{\frac{3}{4}} \\
& =\frac{2}{3}
\end{aligned}
$$

(iii) In a particular school 55% are male and 45% are female. Of the male students 13% say Monday is their favourite day, while 18% of the females say Monday is their favourite.

Find the probability that a student chosen at random is a male whose favourite day is Monday.

$$
\begin{gathered}
P(\text { Male })=0.55 \quad P(\text { Monday } \mid \text { Male })=0.13 \\
P(\text { Monday } \mid \text { Male })= \\
0.13=\frac{P(\text { Monday \& Male })}{P(\text { Male })} \\
0.55
\end{gathered}
$$

$$
P(\text { Monday \& Male })=0.13 \times 0.55
$$

$$
=0.0715
$$

Exercise 12G; 1ac, 2, 3, 5, 6ac, 7ac, 8ace, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 25

