Quadratic Function

y $y = x^2$ x

² The linear function and the **quadratic function** are the building blocks of all polynomials

Every polynomial can be factorised down to a combination of linear and quadratic factors.

All quadratics can be transformed from the basic equation $y = x^2$ using translations, rotations, reflections or a combination of all three.

Recognising the quadratic function

power `1'
$$y = ax^2 + bx + c$$

power `2'

• terms contain at most one variable, one variable is to the power of one, the other variable hs a term to the power of two

Quadratics and the Discriminant

$$\Delta = b^2 - 4ac$$

vertex =
$$\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$$

zeroes = $\frac{-b \pm \sqrt{\Delta}}{2a}$

Note: if $\Delta < 0$, no *x* intercepts $\Delta = 0$, one *x* intercept $\Delta > 0$, two *x* intercepts

e.g. Sketch the parabola
$$y = x^2 + 8x + 12$$

 $\Delta = 8^{2} - 4(1)(12)$ = 16 $\therefore \text{ vertex} = \left(-\frac{8}{2}, -\frac{16}{4}\right)$ = (-4, -4)

Exercise 3E;1a, 2a, 3ace, 4b, 5be, 6ac, 7bc, 8c, 9, 10ace, 11be, 12ac, 13 Exercise 3F; 1a, 3a, 5adf, 8a, 9, 10, 11, 12, 13a