Quadratic Function

The linear function and the quadratic function are the building blocks of all polynomials
Every polynomial can be factorised down to a combination of linear and quadratic factors.

All quadratics can be transformed from the basic equation $y=x^{2}$ using translations, rotations, reflections or a combination of all three.

Recognising the quadratic function

- terms contain at most one variable, one variable is to the power of one, the other variable hs a term to the power of two

Quadratics and Completing the

x intercepts

vertex is (h, k)

$$
(x+4)^{2}-4=0
$$

$$
(x+4)^{2}=4
$$

$$
x+4= \pm 2
$$

$$
x=-4 \pm 2
$$

$$
x=-6 \text { or } x=-2
$$

$\therefore x$ intercepts are

$$
(-6,0) \text { and }(-2,0)
$$

(ii) Write down the quadratic with roots 2 and 8 and vertex $(5,3)$

$$
\begin{array}{lll}
y=k\left\{(x-5)^{2}\right\}+3 & 9 k=-3 & y=-\frac{1}{3}\left\{(x-5)^{2}\right\}+3 \\
(2,0): 0=k\left\{(2-5)^{2}\right\}+3 & k=-\frac{1}{3} & y=-\frac{1}{3}\left(x^{2}-10 x+16\right) \\
\hline
\end{array}
$$

Quadratics and the Discriminant

$$
\Delta=b^{2}-4 a c
$$

$$
\begin{aligned}
& \text { vertex }=\left(\frac{-b}{2 a}, \frac{-\Delta}{4 a}\right) \\
& \text { zeroes }=\frac{-b \pm \sqrt{\Delta}}{2 a}
\end{aligned}
$$

Note: if $\quad \Delta<0$, no x intercepts $\Delta=0$, one x intercept
$\Delta>0$, two x intercepts
e.g. Sketch the parabola $y=x^{2}+8 x+12$
$\Delta=8^{2}-4(1)(12)$
$=16$
\therefore vertex $=\left(-\frac{8}{2},-\frac{16}{4}\right)$
$=(-4,-4)$

Exercise 3E;1a, 2a, 3ace, 4b, 5be, 6ac, 7bc, 8c, 9, 10ace, 11be, 12ac, 13

Exercise 3F; 1a, 3a, 5adf, 8a, 9, 10, 11, 12, 13a

