Graphs with Asymptotes

Asymptotes are a geometrical way of describing the behaviour of a function at its extremities
Types of Asymptotes

Vertical asymptotesoccur if $\lim _{x \rightarrow a} f(x)= \pm \infty$
Functions do not touch/cut vertical asymptotes
Horizontal asymptotes occur if $\lim _{x \rightarrow+\infty} f(x)=b$ $y \rightarrow \pm \infty$

Oblique asymptotes occur if $\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty$
Notes: oblique asymptotes are straight lines, asymptotes could be any function that approaches infinity
functions can touch/cut horizontal and oblique asymptotes

Rectangular Hyperbolic Function

Any data that demonstrates inverse variation will lie on a rectangular hyperbola.

Rectangular hyperbolas have two asymptotes that are perpendicular

All rectangular hyperbolas can be transformed from the basic equation $y=\frac{1}{x}$ using translations, rotations, reflections or a combination of all three.

Recognising the hyperbolic function

$$
\underbrace{y}_{1 m a r}=\frac{1}{x}
$$

- one variable is in the numerator of a fraction, the other is in the denominator of another fraction

Exponential Functions

The orientation of the basic exponential function is determined by the

Recognising the exponential function

- one variable is in the power (or exponent)

$$
y=\sigma^{2}
$$

- the base is positive (not equal to 1)

Exercise 3H; 1, 3, 4,
6, 11, 12, 15b, 16a, 17, 18

