Asymptotes

Curves always bend towards the asymptotes
Curves never cross a vertical asymptote
Curves approach horizontal and oblique asymptotes as $x \rightarrow \pm \infty$

$$
\begin{aligned}
& \text { e.g. (i) } y=\frac{(x+3)(x-2)}{(x-1)(x+1)} \\
& x ^ { 2 } - 1 \longdiv { 1 } \begin{array} { c }
{ x ^ { 2 } + x - 6 } \\
{ \frac { x ^ { 2 } - 1 } { x - 5 } } \\
{ y = 1 + \frac { x - 5 } { (x - 1) (x + 1) } }
\end{array}
\end{aligned}
$$

x intercepts: $(-3,0),(2,0)$ y intercept: $(0,6)$ vertical asymptotes: $x= \pm 1$ horizontal asymptote: $y=1$ cuts horizontal asymptote at $x=5$

$$
\begin{aligned}
& \text { (ii) } y=\frac{(x-2)(x-1)(x+1)}{(x+2)(x-3)} \\
& x ^ { 2 } - x - 6 \longdiv { x ^ { 3 } - 2 x ^ { 2 } - x + 2 } \\
& \frac{x^{3}-x^{2}-6 x}{-x^{2}+5 x+2} \\
& -\frac{x^{2}+x+6}{4 x-4}
\end{aligned}+\begin{aligned}
& y=x-1+\frac{4 x-4}{(x+2)(x-3)}
\end{aligned}
$$

x intercepts: $(-1,0),(1,0),(2,0)$
y intercept: $\left(0,-\frac{1}{3}\right)$
vertical asymptotes: $x=-2,3$ oblique asymptote: $y=x-1$

cuts horizontal

asymptote at $x=1$

Graphs of Reciprocal Functions

The graph of $y=\frac{1}{f(x)}$ can be sketched by first drawing $y=f(x)$ and noticing;

- when $f(x)=0$, then $\frac{1}{f(x)}$ is undefined, (i.e. a vertical asymptote exists)
- when $f(x) \rightarrow \infty$, then $\frac{1}{f(x)} \rightarrow 0$, (i.e. asymptotes become x intercepts)
- when $f(x)$ is increasing, the reciprocal is decreasing, and visa - versa
- when $f(x)$ is positive, $\frac{1}{f(x)}$ is positive, etc.
- the derivative of $\frac{1}{f(x)}$ is $\frac{-f^{\prime}(x)}{[f(x)]^{2}}$, hence stationary points of the
original curve are stationary points of its reciprocal.

