Asymptotes

Curves always bend towards the asymptotes

Curves never cross a **vertical** asymptote

Curves approach **horizontal** and **oblique** asymptotes as $x \to \pm \infty$

Graphs of Reciprocal Functions

The graph of $y = \frac{1}{f(x)}$ can be sketched by first drawing y = f(x)

and noticing;

- when f(x) = 0, then $\frac{1}{f(x)}$ is undefined, (i.e. a vertical asymptote exists)
- when $f(x) \to \infty$, then $\frac{1}{f(x)} \to 0$, (i.e. asymptotes become x intercepts)
- when f(x) is increasing, the reciprocal is decreasing, and visa versa
- when f(x) is positive, $\frac{1}{f(x)}$ is positive, etc.
- the derivative of $\frac{1}{f(x)}$ is $\frac{-f'(x)}{[f(x)]^2}$, hence stationary points of the

original curve are stationary points of its reciprocal.

