Addition of Graphs

$y=f(x)+g(x)$ can be graphed by first graphing $y=f(x)$ and $y=g(x)$ separately and then adding their ordinates together.

- find and mark the x and y intercepts
- draw lines perpendicular to x axis cutting both curves
- add the y coordinates along each line and mark the point
- join the points

$$
\text { e.g. } y=x^{2}+x
$$

$$
\text { (ii) } y=x+\frac{1}{x}
$$

Things to keep in mind:

Discontinuities: any exclusions in the domain of the original function(s) remain in the new function
x-intercept: If $f(x)=-g(x)$, then $y=f(x)+g(x)=0$
symmetry: like functions retain symmetry when added

odd function + odd function = odd function
even function + even function = even function

$$
\begin{aligned}
& \text { e.g. } f(x)=x+\frac{1}{x}, g(x)=1-\frac{1}{x} \quad y=f(x)+g(x) \\
& =x+1, x \neq 0
\end{aligned}
$$

e.g. $y=|x+3|+|1-x|$

$$
\begin{array}{lll}
x \leq-3 ; & -3<x<1 ; & x \geq 1 ; \\
y=-(x+3)+(1-x) & y=(x+3)+(1-x) & y=(x+3)-(1-x) \\
y=-x-3+1-x & y=x+3+1-x & y=x+3-1+x \\
y=-2 x-2 & y=4 & y=2 x+2
\end{array}
$$

$y=f(x)-g(x)$ can be graphed by first graphing $y=f(x)$ and $y=-g(x)$ separately and then adding the ordinates together.

The graph of $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{g}(\boldsymbol{x})$ where $\mathrm{g}(\mathrm{x})$ is bounded

If the graph of $y=g(x)$ is bounded by the lines $y=a$ and $y=b$, then $y=x+g(x)$ will be bounded by the lines $y=x+a$ and $y=x+b$
e.g. $y=x-\sin x$

[^0]
Multiplication of Graphs

$y=f(x) \times g(x)$ can be graphed by first graphing $y=f(x)$ and $y=g(x)$ separately and then;

- mark the x intercepts, this will be where the new function changes sign
- multiply the "signs" of each function to determine the sign of the new function
- mark the y intercept
- special note needs to be made of points where $f(x)=1$, or $g(x)=1$ (and -1).
- if $f(x)$ or $g(x) \rightarrow 0$ or $\pm \infty$, then so will the new function

Things to keep in mind:

discontinuities: any exclusions in the domain of the original function(s) remain in the new function symmetry: symmetric graphs will retain some form of symmetry

(ii) $y=x^{2}(x+1)(x-1)^{3}$

Graphs of the Form $y=[f(x)]^{2}$

$y=f(x) \times f(x)$ i.e. $y=[f(x)]^{2}$ can be graphed by first graphing $y=f(x)$ then;

- all single roots will become double roots
- all stationary points must still be stationary points
- all discontinuities will remain
- horizontal and oblique asymptotes may change (square their value)
- if $|f(x)|>1$ then $[f(x)]^{2}>f(x)$ i.e. new curve is above the old curve
- if $|f(x)|<1$ then $[f(x)]^{2}<f(x)$ i.e. new curve is below the old curve

Division of Graphs

$y=\frac{f(x)}{g(x)}$ can be thought of as $y=f(x) \times \frac{1}{g(x)}$ and the same procedures as multiplication can be followed except;

- the x intercepts of $g(x)$ will become vertical asymptotes or point discontinuities
- investigation the behaviour of the function for large values of x will be required (find horizontal/oblique asymptotes, look at dominance)

$$
\begin{aligned}
y & =\frac{(x+1)(x-2)}{(x+2)(x-1)} \\
& =\frac{x^{2}-x-2}{x^{2}+x-2} \\
& =1-\frac{2 x}{x^{2}+x-2} \quad \therefore \text { horizontal asymptote }: y=1
\end{aligned}
$$

$$
\text { e.g. } y=\frac{(x+1)(x-2)}{(x+2)(x-1)}
$$

(ii) $y=\frac{\sin x}{x}$
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
(ii) $y=\frac{\sin x}{x}$

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Exercise 5D; 1c, 2c, 3c, 6, 7, 8, 9, 10, 11, 12b, 14bd
symmetry:
odd function \times odd function $=$ even function even function \times even function $=$ even function odd function \times even function $=$ odd function

[^0]: \square Equation 1: $y=x$
 Equation 2: $y=-\sin x$
 \square Equation $3: y=x-\sin x$

