Probability Distributions
 A probability distribution assigns numerical values to each outcome (event) in a

 sample space.The outcomes may be;
numeric: elements of sample space are numeric in value e.g. roll of a dice
or
categorical: elements of the sample space are names or objects e.g. blood types

A random variable is a function, the value of which is a real number determined by the probability associated with the occurrence of each of its outcomes.

* random variables are denoted by an uppercase letter
* their values are represented by the corresponding lowercase letter
* random variables are continuous if its range forms an infinite set of real numbers i.e. consists of intervals
* random variables are discrete if its range is countable i.e. consists of individual (discrete) values
Note: a discrete sample space may be infinitely countable
e.g. $X=$ number of times a dice is rolled before a ' 6 ' occurs
e.g. a coin is tossed three times and the random variable X is defined as the number of heads thrown
sample space of coin toss $=\{$ ннн , ннт , нтн, тнн , ттн , тнт , нтt , ттt $\}$ sample space of $X=\{3,2,2,2,1,1,1,0\}$

\boldsymbol{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathrm{P}(\mathrm{X}=x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

probability distribution

Properties of $\mathrm{P}(\mathrm{X}=x)$

1. $\mathrm{P}(\mathrm{X}=x) \geq 0$
2. $\sum \mathrm{P}(\mathrm{X}=x)=1$

NOTE:
if $\mathrm{P}(\mathrm{X}=x)$ is the same for all x, then the distribution is uniform

Exercise 13A; 1, 2, 3acd, 4ac, 5, 6, 7acegj, 8ad, 9bd, 10c, 11, 13, 15a, 16

