Expectation

Let X be a discrete random variable, then the expected value of X is;

$$
\mathrm{E}(X)=\sum x p(x)
$$

$$
\text { where } p(x)=\mathrm{P}(X=x) \geq 0
$$

Note: $\mathrm{E}(X)=\mu$ (arithmetic mean)

$$
\mathrm{E}(X) \text { is a measure of central tendency }
$$

Laws of Expectation

1. If a and b are constants; $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$

Proof: $\mathrm{E}(a X+b)=\sum(a x+b) p(x)$

$$
\begin{aligned}
& =\sum a x p(x)+\sum b p(x) \\
& =a \sum x p(x)+b \sum p(x) \\
& =a \mathrm{E}(X)+b
\end{aligned}
$$

2. $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$
e.g.In a marketing survey, 25 families are polled to finf the number of litres of milk consumed during a particular week.

The results were;	\# of litres	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
	\# of families	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{9}$	5	3	1

Based on this data, how manylitres of milk would you expect a similar family to consume in a week?

\boldsymbol{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\boldsymbol{\Sigma}$
$p(x)$	$\frac{2}{25}$	$\frac{5}{25}$	$\frac{9}{25}$	$\frac{5}{25}$	$\frac{3}{25}$	$\frac{1}{25}$	1
$x p(x)$	0	$\frac{5}{25}$	$\frac{18}{25}$	$\frac{15}{25}$	$\frac{12}{25}$	$\frac{5}{25}$	2.2

$\mathrm{E}(X)=\sum x p(x)$ or $\mathrm{E}(X)=\mu$
$=2.2$

$$
\begin{aligned}
& =\frac{0 \times 2+1 \times 5+2 \times 9+3 \times 5+4 \times 3+5 \times 1}{25} \\
& =2.2
\end{aligned} \frac{\text { We would expect a family to }}{\text { xpected value }} \quad \begin{aligned}
& \text { consume 2.2 L of milk weekly }
\end{aligned}
$$

Note: Random variables have an expected value Sample spaces have a mean

Exercise 13B; 2, 3, 4a, 5, 6, 7adf, 8, 9, 10, 11, 12, 13, 14

