Circular Motion

Angular Velocity Let O be the centre of a circle, radius r units.

The linear velocity, v, of the point at every position on its path is tangential to the circle.

$$
\text { Let } \operatorname{arc} A P=x
$$

$$
\begin{aligned}
x & =r \theta \\
\frac{d x}{d t} & =r \frac{d \theta}{d t} \\
& =r \omega
\end{aligned}
$$

$$
\begin{gathered}
v=r \omega \\
O R \\
v=r \dot{\theta}
\end{gathered}
$$

Period

$$
T=\frac{2 \pi}{\omega} \quad \text { (time taken for one revolution) }
$$

e.g. A satellite moves in a circular orbit of 20 rev/day
a) Describe ω in rad/s

$$
\begin{aligned}
\omega & =20 \times 2 \pi \mathrm{rad} / \mathrm{day} \\
& =\frac{20 \times 2 \pi}{24 \times 60 \times 60} \mathrm{rad} / \mathrm{s} \\
& =\frac{\pi}{2160} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

b) Find the satellite's tangential velocity, given that its radius is 9000 km , in km/h

$$
\begin{aligned}
v & =r \omega \\
& =9000 \times \frac{\pi}{2160} \mathrm{~km} / \mathrm{s} \\
& =9000 \times \frac{\pi}{2160} \times 60 \times 60 \mathrm{~km} / \mathrm{h} \\
& =15000 \pi \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Patel Exercise 9A; odd

