Statistical Inference

Statistical inference is using data analysis to infer properties of a probability distribution.

It assumes that a sampled data set can be used to make predictions about a larger population from which the sample is drawn.

what is sampling?

A selection of elements from a finite or infinite population

why sample?

- 1) Speed: quicker
- 2) Cost: cheaper
- 3) Accuracy: tendency to miscount for large numbers
- 4) Necessity: can't test for quality on every item if they will be destroyed e.g. matches

how should samples be drawn?

Always randomly, a sample is random when each element in the population has an equal chance of being selected. There is a lack of bias or predictability.

Note: a random sample is not necessarily a cross-section of the population

Notation/Terminology _____

	Population	Sample
collection method	census	survey

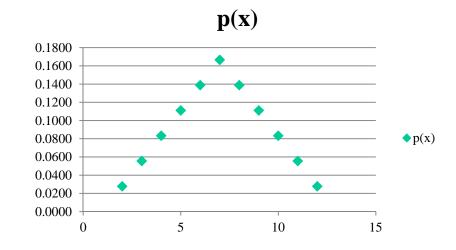
	Population	Sample
collection method	census	survey
P(X=x)	probability $p(x)$	relative frequency f_r

	Population	Sample
collection method	census	survey
P(X=x)	probability $p(x)$	relative frequency f_r
E(X)	μ	\overline{x}

	Population	Sample
collection method	census	survey
P(X=x)	probability $p(x)$	relative frequency f_r
E(X)	μ	\overline{x}
Var(X)	σ^2	s^2

	Population	Sample
collection method	census	survey
P(X=x)	probability $p(x)$	relative frequency f_r
E(X)	μ	\overline{x}
Var(X)	σ^2	s^2
Note: as	$n \to \infty : \overline{x} \to u$ and s	$s^2 \rightarrow \sigma^2$

e.g. Two dice are rolled. Use the theoretical probability distribution to calculate E(X) and Var(X) for the population


X	2	3	4	5	6	7	8	9	10	11	12	Sum
p(x)	0.0278	0.0556	0.0833	0.1111	0.1389	0.1667	0.1389	0.1111	0.0833	0.0556	0.0278	1
xp(x)	0.0556	0.1667	0.3333	0.5556	0.8333	1.1667	1.1111	1.0000	0.8333	0.6111	0.3333	7.0000
x2p(x)	0.1111	0.5000	1.3333	2.7778	5.0000	8.1667	8.8889	9.0000	8.3333	6.7222	4.0000	54.8333

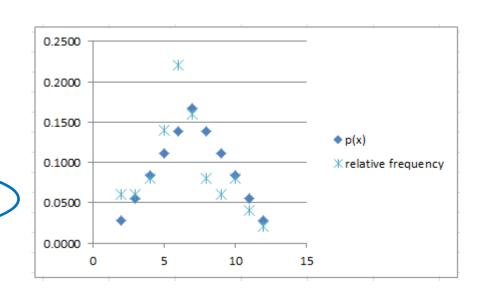
$$E(X) = 7$$

$$Var(X) = E(X^{2}) - \mu^{2}$$

$$= 54.8\dot{3} - 49$$

$$= 5.8\dot{3} \qquad \sigma = 2.4152$$

(ii) Roll a pair of dice 50, 100, 500, 1000 times and compare these samples with the population.

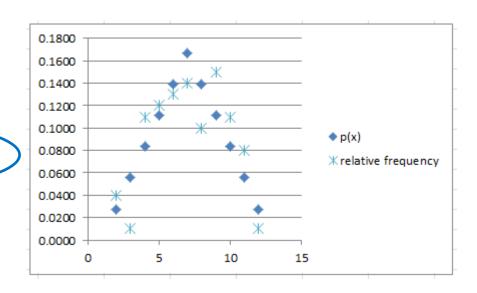

X	2	3	4	5	6	7	8	9	10	11	12	Sum
p(x)	0.0278	0.0556	0.0833	0.1111	0.1389	0.1667	0.1389	0.1111	0.0833	0.0556	0.0278	1
xp(x)	0.0556	0.1667	0.3333	0.5556	0.8333	1.1667	1.1111	1.0000	0.8333	0.6111	0.3333	7.0000
x2p(x)	0.1111	0.5000	1.3333	2.7778	5.0000	8.1667	8.8889	9.0000	8.3333	6.7222	4.0000	54.8333
Frequency	3	3	4	7	11	8	4	3	4	2	1	50
Frequency relative frequency	3 0.0600	3 0.0600	4 0.0800	7 0.1400	11 0.2200	8 0.1600	4 0.0800	3 0.0600	4 0.0800	2 0.0400	1 0.0200	50 1.0000
' ' '	3 0.0600 0.1200	3 0.0600 0.1800	4 0.0800 0.3200	7 0.1400 0.7000		8 0.1600 1.1200	4 0.0800 0.6400	3 0.0600 0.5400		2 0.0400 0.4400	1 0.0200 0.2400	
relative frequency					0.2200				0.0800			1.0000

$$E(X) = \underline{6.42} \quad |\mu - \overline{x}| = 0.58$$

$$Var(X) = E(X^{2}) - \overline{x}^{2}$$

$$= 47.02 - 6.42^{2}$$

$$= 5.8036 \quad |\sigma - s| = 0.0061$$

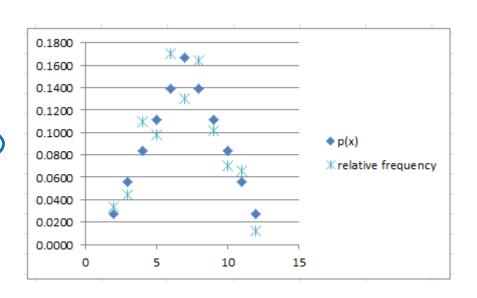

x	2	3	4	5	6	7	8	9	10	11	12	Sum
p(x)	0.0278	0.0556	0.0833	0.1111	0.1389	0.1667	0.1389	0.1111	0.0833	0.0556	0.0278	1
xp(x)	0.0556	0.1667	0.3333	0.5556	0.8333	1.1667	1.1111	1.0000	0.8333	0.6111	0.3333	7.0000
x2p(x)	0.1111	0.5000	1.3333	2.7778	5.0000	8.1667	8.8889	9.0000	8.3333	6.7222	4.0000	54.8333
Frequency	4	1	11	12	13	14	10	15	11	8	1	100
Frequency relative frequency	4 0.0400	1 0.0100	11 0.1100	12 0.1200	13 0.1300	14 0.1400	10 0.1000	15 0.1500	11 0.1100	8 0.0800	0.0100	100 1.0000
' '	-	0.0100 0.0300								_	0.0100 0.1200	

$$E(X) = 7.16 \quad |\mu - \overline{x}| = 0.16$$

$$Var(X) = E(X^{2}) - \overline{x}^{2}$$

$$= 57.22 - 7.16^{2}$$

$$= 5.9544 \qquad |\sigma - s| = 0.0250$$

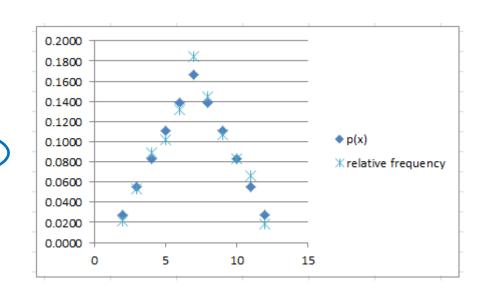

x	2	3	4	5	6	7	8	9	10	11	12	Sum
p(x)	0.0278	0.0556	0.0833	0.1111	0.1389	0.1667	0.1389	0.1111	0.0833	0.0556	0.0278	1
xp(x)	0.0556	0.1667	0.3333	0.5556	0.8333	1.1667	1.1111	1.0000	0.8333	0.6111	0.3333	7.0000
x2p(x)	0.1111	0.5000	1.3333	2.7778	5.0000	8.1667	8.8889	9.0000	8.3333	6.7222	4.0000	54.8333
Frequency	17	22	55	49	85	65	82	51	35	33	6	500
Frequency relative frequency	17 0.0340	22 0.0440	55 0.1100	49 0.0980	85 0.1700	65 0.1300	82 0.1640	51 0.1020	35 0.0700	33 0.0660	6 0.0120	500 1.0000
· '												_

$$E(X) = \underline{6.86} \qquad |\mu - \overline{x}| = 0.14$$

$$Var(X) = E(X^{2}) - \overline{x}^{2}$$

$$= 52.704 - 6.86^{2}$$

$$= 5.6444 \qquad |\sigma - s| = 0.0394$$


12	Sum
0.0278	1
0.3333	7.0000
4.0000	54.8333
18	1000
0.0180	1.0000
0.2160	7.0420
2.5920	55.1280
	0.0278 0.3333 4.0000 18 0.0180 0.2160

$$E(X) = 7.042 \quad |\mu - \overline{x}| = 0.042$$

$$Var(X) = E(X^{2}) - \overline{x}^{2}$$

$$= 55.128 - 7.042^{2}$$

$$= 5.5382 \quad |\sigma - s| = 0.0619$$

Exercise 13D; 1, 2, 10, 11