Acceleration with Uniform Circular Motion

Uniform circular motion is when a particle moves with constant angular velocity. (\therefore the magnitude of the linear velocity will also be constant)

A particle moves from A to P with constant angular velocity.

The acceleration of the particle is the change in velocity with respect to time.

This triangle of vectors is similar to $\triangle \mathrm{OAP}$

$$
\frac{\Delta v}{A P}=\frac{v}{r}
$$

$$
\Delta v=\frac{v \cdot A P}{r}
$$

$$
a=\frac{\Delta v}{\Delta t}
$$

$$
a=\frac{v \cdot A P}{r \cdot \Delta t}
$$

But, as $\Delta t \rightarrow 0, A P=\operatorname{arc} A P$

$$
\therefore a=\lim _{\Delta t \rightarrow 0} \frac{v \cdot \operatorname{arcAP}}{r \cdot \Delta t}
$$

$$
\begin{aligned}
\therefore a & =\lim _{\Delta t \rightarrow 0} \frac{v \cdot v \cdot \Delta t}{r \cdot \Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{v^{2}}{r} \\
& =\frac{v^{2}}{r}
\end{aligned}
$$

\therefore the acceleration in uniform circular motion has magnitude $\frac{v^{2}}{r}$ and is directed towards the centre

$\frac{\text { Acceleration Involved in }}{\text { Uniform Circular Motion }}$
$a=\frac{v^{2}}{r}$
$O R$
$a=r \omega^{2}$

Forces Involved in
Uniform Circular Motion
$F=\frac{m v^{2}}{r}$
$O R$
$F=m r \omega^{2}$

Forces Involved in Uniform Circular Motion

$$
\begin{gathered}
F=\frac{m v^{2}}{r} \\
O R \\
F=m r \omega^{2}
\end{gathered}
$$

e.g. (i) (2003)

A particle P of mass m moves with constant angular velocity ω on a circle of radius r. Its position at time t is given by;

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta, \quad \text { where } \theta=\omega t
\end{aligned}
$$

a) Show that there is an inward radial force of magnitude $m r \omega^{2}$ acting on P.

$$
\begin{aligned}
& x=r \cos \theta \\
& \dot{x}=-r \sin \theta \cdot \frac{d \theta}{d t} \\
& =-r \omega \sin \theta \\
& \ddot{x}=-r \omega \cos \theta \cdot \frac{d \theta}{d t} \\
& =-r \omega^{2} \cos \theta \\
& =-\omega^{2} x \\
& \begin{aligned}
a^{2} & =(\ddot{x})^{2}+(\ddot{y})^{2} \\
& =\omega^{4} x^{2}+\omega^{4} y^{2}
\end{aligned} \\
& =\omega^{4}\left(x^{2}+y^{2}\right) \\
& \alpha=\tan ^{-1} \frac{\ddot{y}}{\ddot{x}} \quad=-\omega^{2} y \\
& =\tan ^{-1}\left(\frac{-\omega^{2} y}{-\omega^{2} x}\right) \\
& =\tan ^{-1} \frac{y}{x} \\
& =\theta \\
& \therefore \text { There is a force, } F=m r \omega^{2} \text {, acting } \\
& \text { towards the centre }
\end{aligned}
$$

b) A telecommunications satellite, of mass m, orbits Earth with constant angular velocity ω at a distance r from the centre of the Earth. The gravitational force exerted by Earth on the satellite is $\frac{A m}{r^{2}}$ where A is a constant. By considering all other forces on the satellite to be negligible, show that;

$$
r=\sqrt[3]{\frac{A}{\omega^{2}}}
$$

$$
m \ddot{x}=m r \omega^{2} \left\lvert\, \frac{A m}{r^{2}} \quad \begin{aligned}
m r \omega^{2} & =\frac{A m}{r^{2}} \\
r^{3} & =\frac{A m}{m \omega^{2}} \\
& =\frac{A}{\omega^{2}} \\
r & =\sqrt[3]{\frac{A}{\omega^{2}}}
\end{aligned}\right.
$$

(ii) A string is 50 cm long and it will break if a ,mass exceeding 40kg is hung from it.
A mass of 2 kg is attached to one end of the string and it is revolved in a circle.
Find the greatest angular velocity which may be imparted without breaking the string.

$$
\begin{aligned}
m \ddot{x} & =m g-T \\
0 & =m g-T \\
T & =(40)(9.8) \\
& =392 N
\end{aligned}
$$

$$
\begin{aligned}
T & =m r \omega^{2} \\
392 & =(2)(0.5) \omega^{2} \\
\omega^{2} & =392 \\
\omega & =\sqrt{392} \\
\omega & =2 \sqrt{98} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Patel Exercise 9B; all

"Cambridge" Exercise 9A; 1 to 4, 6, 9, 12, 14

