(J)Graphs of the Form $y = \sqrt{f(x)}$

The graph of $y = \sqrt{f(x)}$ can be sketched by first drawing y = f(x) and noticing;

- $\sqrt{f(x)}$ is only defined if $f(x) \ge 0$
- $\sqrt{f(x)} \ge 0$ for all x in the domain
- $\sqrt{f(x)} < f(x)$ if f(x) > 1 and $\sqrt{f(x)} > f(x)$ if f(x) < 1
- $\frac{dy}{dx} = \frac{f'(x)}{\sqrt{f(x)}}$ implies;
 - ⇒ stationary points must still be stationary points
 - \Rightarrow there are critical points where f(x) = 0

$$y = x^{\frac{a}{b}} \qquad y = x^{\frac{1}{3}}$$

 $\frac{a}{b}$ < 1 curve is concave down in 1st quadrant (vertical tangent)

$$y = x^{\frac{4}{3}}$$

$$y = x^{\frac{5}{3}}$$

$$y = x^{\frac{6}{3}}$$

 $\frac{a}{b} > 1$ curve is concave up in 1st quadrant (horizontal tangent)

f(x) Graph of
$$y = f(x)$$
 Graph of $y = \sqrt{f(x)}$ Shape of $y^2 = f(x)$
 x^4
 x^3
 x^2
 $x^{\frac{5}{3}}$
 $x^{\frac{4}{3}}$

