(J)Graphs of the Form $y=\sqrt{f(x)}$

The graph of $y=\sqrt{f(x)}$ can be sketched by first drawing $y=f(x)$ and noticing;

- $\sqrt{f(x)}$ is only defined if $f(x) \geq 0$
- $\sqrt{f(x)} \geq 0$ for all x in the domain
- $\sqrt{f(x)}<f(x)$ if $f(x)>1$ and $\sqrt{f(x)}>f(x)$ if $f(x)<1$
- $\frac{d y}{d x}=\frac{f^{\prime}(x)}{\sqrt{f(x)}}$ implies;
\Rightarrow stationary points must still be stationary points
\Rightarrow there are critical points where $f(x)=0$

$y=x^{\frac{a}{b}} \quad y=x^{\frac{1}{3}}$
$\frac{a}{b}<1$ curve is concave down in $1^{\text {st }}$ quadrant (vertical tangent)

$$
y=x^{\frac{4}{3}}
$$

$$
y=x^{\frac{5}{3}}
$$

$\frac{a}{b}>1$ curve is concave up in $1^{\text {st }}$ quadrant (horizontal tangent)

