\qquad

Mathematics Extension 1

General	- Reading time -5 minutes
Instructions	- Working time -2 hours
	- Write using black pen
	- NESA approved calculators may be used
	- In Questions $11-14$, show relevant mathematical reasoning
	and/or calculations

Total marks: Section I-10 marks (pages 2-5)

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - $\mathbf{6 0}$ marks (pages 6-11)

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Marker's Use Only							
Question	1-10	11	12	13	14		
Mark	/10	/15	/15	/15	/15	170	\%

This paper must not be removed from the examination room

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Which expression is equal to $\sin x+\cos x$?
(A) $\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)$
(B) $\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)$
(C) $2 \sin \left(x+\frac{\pi}{4}\right)$
(D) $\quad 2 \sin \left(x-\frac{\pi}{4}\right)$

2 What is the acute angle between the lines $3 x+y=4$ and $x-2 y=5$?
(A) $\tan ^{-1} 0.5$
(B) $\tan ^{-1} 1$
(C) $\tan ^{-1} 2$
(D) $\tan ^{-1} 7$

3 Which of the polynomials are divisible by $x+1$?
(I) $x^{2018}-1$
(II) $x^{2017}-1$
(III) $x^{2018}+1$
(IV) $x^{2017}+1$
(A) (I) and (III) only
(B) (II) and (III) only
(C) (II) and (IV) only
(D) (I) and (IV) only

4 In the diagram below, if $B C$ and $D C$ are tangents then:

(A) $\alpha+\beta=180^{\circ}$
(B) $2 \alpha+\beta=180^{\circ}$
(C) $\alpha+2 \beta=180^{\circ}$
(D) $2 \alpha+2 \beta=180^{\circ}$

5 A particle is moving in simple harmonic motion which satisfies $\ddot{x}=-4 x$.
The particle starts from $x=0$ with initial velocity $4 \mathrm{~m} / \mathrm{s}$.
Which is a possible expression for the displacement, x, of the particle?
(A) $x=2 \sin 2 t$
(B) $x=2 \sin 4 t$
(C) $x=4 \sin 2 t$
(D) $x=4 \sin 4 t$
$6 \quad$ What is the derivative of $6 \sin ^{-1} \frac{x}{3}$?
(A) $\frac{1}{\sqrt{9-x^{2}}}$
(B) $\frac{2}{\sqrt{9-x^{2}}}$
(C) $\frac{6}{\sqrt{9-x^{2}}}$
(D) $\frac{18}{\sqrt{9-x^{2}}}$
$7 \quad$ The diagram shows the graph of $y=f(x)$.

Which diagram shows the graph of $y=f^{-1}(x)$?
(A)

(B)

(C)

(D)

8 What are the asymptotes of $y=\frac{x+3}{(x-2)(x+1)}$?
(A) $y=0, x=2, x=-1$
(B) $y=0, x=-2, x=1$
(C) $y=3, x=2, x=-1$
(D) $y=3, x=-2, x=1$

9 Which of the following are the coordinates of the point of intersection of the normal $x+2 p y=8 a p^{3}+4 a p$ and the parabola $x^{2}=4 a y ?$
(A) $\left(2 a p, a p^{2}\right)$
(B) $\left(4 a p, 4 a p^{2}\right)$
(C) $\left(-2 a p, a p^{2}\right)$
(D) $\left(-4 a p, 4 a p^{2}\right)$

10 A particle moves in a straight line. Its position at any time t is given by

$$
x=3 \cos 2 t+4 \sin 2 t .
$$

The acceleration in terms of x is:
(A) $\ddot{x}=-2 x$
(B) $\ddot{x}=-3 x$
(C) $\ddot{x}=-4 x$
(D) $\ddot{x}=-5 x$

Section II

60 marks
 Attempt Questions 11-14
 Allow about 1 hour and 45 minutes for this section

Answer each question on SEPARATE writing paper. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use SEPARATE writing paper.
(a) $\quad A$ and B are the points $(1,4)$ and $(5,2)$ respectively. Find the coordinates of the point M which divides the interval $A B$ externally in the ratio 2:3.
(b) Solve $\frac{2}{x} \leq \frac{x}{2}$.
(c) Evaluate $\lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{3}\right)}{4 x}$.
(d) Water at a temperature of $24^{\circ} \mathrm{C}$ is placed in a freezer that maintains a constant temperature at $-12^{\circ} \mathrm{C}$. After time t minutes the rate of change of temperature T of the water is given by the formula:

$$
\frac{d T}{d t}=-k(T+12)
$$

where t is the time in minutes and k is a positive constant.
(i) Show that $T=A e^{-k t}-12$ is a solution of this equation, where A is a constant.
(ii) Show that the value of A is 36 .
(iii) After 15 minutes the temperature of the water falls to $9^{\circ} \mathrm{C}$. Show that the value of k is 0.0359 correct to 3 significant figures.
(iv) Find to the nearest minute the time taken for the water to start freezing.
(Freezing point of water is $0^{\circ} \mathrm{C}$).
(e) (i) Factorise $e^{3 x}+e^{3 y}$.
(ii) If $e^{x}+e^{y}=3$ and $e^{3 x}+e^{3 y}=10$, find the exact value of $x+y$.

End of Question 11

Question 12 (15 marks) Use SEPARATE writing paper.
(a) Point A is due south of the base of a hill, the angle of elevation from A to the top of the hill, H, is 46°. Another point B is due west of A and the angle of elevation from B to the top of the hill is 35°. The distance $A B$ is 220 m .

(i) Show that $O A=h \tan 44^{\circ}$.
(ii) Find the height of the hill, h correct to 1 decimal place.

Question 12 (continued)
(b) In the diagram below $A B C D$ is a cyclic quadrilateral. E is a point on $A B$ and F is a point on $D C$ such that $E F \| A D$. $B F$ produced and $C E$ produced meet the circle through A, B, C, D at H and G respectively.

(i) Show that $E B C F$ is a cyclic quadrilateral.
(ii) Show that $G H \| E F$, giving reasons.
(c) Let $f(x)=2 \cos ^{-1}\left(\frac{x}{3}\right)$.
(i) State the domain and range of the function $f(x)$.
(ii) Sketch the graph of $y=f(x)$ using $\frac{1}{3}$ of a page.
(iii) Determine the inverse function $y=f^{-1}(x)$, and write down the domain of this inverse function.
(iv) Hence or otherwise find the exact value of the volume of the solid of revolution formed when the region bounded by the curve $y=f(x)$, the x-axis and the y-axis is rotated about the y-axis.

End of Question 12

Question 13 (15 marks) Use SEPARATE writing paper.
(a) A spherical metal ball is heated so that its diameter is increasing at a constant rate of $0.005 \mathrm{~m} / \mathrm{s}$. Given the surface area of the sphere is $S=\pi D^{2}$ where D is the diameter of the sphere, at what rate is the surface area of the metallic ball increasing when its diameter is 6 metres? Correct your answer to 2 decimal places.
(b) The speed $v(\mathrm{~cm} / \mathrm{s})$ of a particle moving in a straight line is given by $v^{2}=12+8 x-4 x^{2}$, where the magnitude of its displacement from a fixed point O is $x(\mathrm{~cm})$.
(i) Show that the motion is simple harmonic.
(ii) Find the amplitude of the motion.
(iii) Find the maximum speed of the particle and state where it occurs.
(c) Let $f(x)=e^{x}+\ln x$.
(i) Show that $f(x)$ is a monotonically increasing function for $x>0$.

Hence explain why $f(x)$ has an inverse.
(ii) The graphs of $y=f(x)$ and $y=f^{-1}(x)$ meet at exactly one point P. Let α be the x-coordinate of P. Explain why α is a root of the equation

$$
e^{x}+\ln x-x=0 .
$$

(iii) Take 0.5 as a first approximation for α. Use one application of Newton's method to find a second approximation for α correct to 3 significant figures.
(d) Prove by mathematical induction that, for $n \geq 1$,

$$
\frac{3}{1 \times 2 \times 2}+\frac{4}{2 \times 3 \times 2^{2}}+\frac{5}{3 \times 4 \times 2^{3}}+\cdots+\frac{n+2}{n(n+1) 2^{n}}=1-\frac{1}{(n+1) 2^{n}}
$$

End of Question 13

Question 14 (15 marks) Use SEPARATE writing paper.
(a) Use the substitution $u=4-x^{2}$ to evaluate

$$
\int_{0}^{2} \frac{x}{\sqrt{4-x^{2}}} d x
$$

(b) $\quad P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are points on the parabola $x^{2}=4 a y$. The normal to the parabola at P and Q intersect at the point $T\left(-a p q(p+q), a\left(2+p^{2}+p q+q^{2}\right)\right)$. (DO NOT prove this)

(i) If $q=-3 p$, show that the coordinates of T are $\left(-6 a p^{3}, 2 a+7 a p^{2}\right)$.
(ii) There is a third normal to the parabola at the point $R\left(2 a r, a r^{2}\right)$ that passes through the point T. Show that the parameter corresponding to the point R satisfies the equation

$$
r^{3}-7 p^{2} r+6 p^{3}=0 .
$$

(iii) Hence find the coordinates of the point R in terms of p.

Question 14 (continued)
(c) A soccer ball is at ground level on a horizontal plane. The ball was kicked at an angle α and with velocity v metres per second. You may assume that if the origin is taken to be the point of projection, the path of the ball is given by the equation

$$
y=x \tan \alpha-\frac{g x^{2} \sec ^{2} \alpha}{2 v^{2}}
$$

where $g \mathrm{~ms}^{-2}$ is the acceleration due to gravity. (DO NOT prove this)

Steve Beckham wants to calculate the "perfect" angle to kick the ball to reach the goal. The defenders are standing between c metres and at most d metres from Steve. The defenders cannot jump higher than h metres. The trajectory of the ball is shown in the diagram below.

(i) Explain why c and d are solutions to the equation

$$
\frac{g \sec ^{2} \alpha}{2 v^{2}} x^{2}-x \tan \alpha+h=0
$$

(ii) Show that $c+d=\frac{2 v^{2} \tan \alpha}{g \sec ^{2} \alpha}$.
(iii) Hence show that $\tan \alpha=\frac{h(c+d)}{c d}$.
(iv) The horizontal range of the soccer ball is given by $R=\frac{v^{2} \sin 2 \alpha}{g}$.

Use the result in part (iii) to show $\frac{v^{2}}{g}=\frac{c^{2} d^{2}+h^{2} R^{2}}{2 h c d}$.

End of Exam

Year 12 CHS 2018 Mathematics Extension 1 (3U) TRIAL Solutions

Section I

Q1	Q2	Q3	Q4	Q5
(A)	(D)	(D)	(B)	(A)
Q6	Q7	Q8	Q9	Q10
(C)	(C)	(A)	(B)	(C)

Question 1

$\sin x+\cos x=R \sin (x+\alpha)$ where
$R=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ and $\alpha=\tan ^{-1}\left(\frac{1}{1}\right)=\frac{\pi}{4}$

Question 2

$$
\begin{align*}
& 3 x+y=4 \quad \rightarrow \quad m_{1}=-3 \\
& x-2 y=5 \rightarrow m_{2}=\frac{1}{2} \\
& \therefore \tan \theta=\left|\frac{-3-\frac{1}{2}}{1+(-3) \times \frac{1}{2}}\right|=7 \\
& \theta=\tan ^{-1}(7) \tag{D}
\end{align*}
$$

Question 3

factor $x+1 \rightarrow x=-1$ is a root
(I) $(-1)^{2018}-1=0$
(IV) $(-1)^{2017}+1=0$

Question 4

Let O be the centre of circle
$\angle O B C=90^{\circ}$ (radius \perp tangent)
$\angle O D C=90^{\circ}$ (radius \perp tangent)
$\angle B O D=2 \alpha$
(angle at centre twice angle at circumference)
$2 \alpha+90^{\circ}+90^{\circ}+\beta=360^{\circ}$
(angle sum of quadrilateral $O B C D$)
$\therefore 2 \alpha+\beta=180^{\circ}$

Question 5

$\ddot{x}=-4 x \rightarrow n=2$.
$x=a \sin 2 t \rightarrow v=2 a \cos 2 t$,
$t=0, v=4 \rightarrow 4=2 a \cos 0 \rightarrow a=2$
$\therefore x=2 \sin 2 t$

Question 6

$$
\begin{equation*}
\frac{d}{d x}\left(6 \sin ^{-1} \frac{x}{3}\right)=6 \times \frac{1}{\sqrt{3^{2}-x^{2}}}=\frac{6}{\sqrt{9-x^{2}}} \tag{C}
\end{equation*}
$$

Question 7

Reflect $y=f(x)$ about $y=x$.

Question 8

Vertical asymptote, denominator $=0$

$$
(x-2)(x+1)=0 \rightarrow x=2, x=-1
$$

Horizontal asymptote,

$$
\begin{align*}
y & =\lim _{x \rightarrow \infty} \frac{x+3}{(x-2)(x+1)}=\lim _{x \rightarrow \infty} \frac{x+3}{x^{2}-x-2} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{x}{x^{2}}+\frac{3}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{x}{x^{2}}-\frac{2}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{3}{x^{2}}}{1-\frac{1}{x}-\frac{2}{x^{2}}} \\
& =\frac{0+0}{1-0-0}=0 \tag{A}
\end{align*}
$$

Question 9

Point ($4 a p, 4 a p^{2}$) lies on the equation of the normal by substitution into the equation of normal.

$$
\begin{align*}
\text { LHS } & =x+2 p y \\
& =4 a p+2 p \times 4 a p^{2} \\
& =4 a p+8 a p^{3}=\text { RHS } \tag{B}
\end{align*}
$$

Question 10

$x=3 \cos 2 t+4 \sin 2 t$.
$v=-6 \sin 2 t+8 \cos 2 t$
$\ddot{x}=-12 \cos 2 t-16 \sin 2 t$
$=-4(3 \cos 2 t+4 \sin 2 t)$
$=-4 x$

Section II

Question 11

(a) $x=\frac{-3 \times 1+2 \times 5}{2-3}=-7, y=\frac{-3 \times 4+2 \times 2}{2-3}=8$ $\therefore M=(-7,8)$

Year 12 CHS 2018 Mathematics Extension 1 (3U) TRIAL Solutions

(b)

$$
\begin{aligned}
\frac{2}{x} & \leq \frac{x}{2} \quad x \neq 0 \\
\frac{2}{x} \times x^{2} & \leq \frac{x}{2} \times x^{2} \\
2 x & \leq \frac{x^{3}}{2} \\
4 x & \leq x^{3} \\
0 & \leq x^{3}-4 x \\
0 & \leq x(x-2)(x+2)
\end{aligned}
$$

$\therefore-2 \leq x<0, x \geq 2$
(c)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{3}\right)}{4 x} & =\frac{1}{4} \lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{3}\right)}{x} \\
& =\frac{1}{4} \times \frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{3}\right)}{\frac{x}{3}} \\
& =\frac{1}{4} \times \frac{1}{3} \times 1=\frac{1}{12}
\end{aligned}
$$

(d) (i) $\frac{d T}{d t}=-k A e^{-k t}$

$$
\begin{aligned}
& =-k\left(A e^{-k t}-12+12\right) \\
& =-k(T+12)
\end{aligned}
$$

(ii) When $t=0, T=24^{\circ}$

$$
24=A e^{-k \times 0}-12
$$

$$
24=A \times 1-12
$$

$$
A=24+12=36
$$

(iii) $9=36 e^{-k \times 15}-12$

$$
21=36 e^{-15 k}
$$

$$
\frac{21}{36}=e^{-15 k}
$$

$$
k=-\frac{1}{15} \ln \left(\frac{21}{36}\right) \approx 0.0359
$$

(iv) $0=36 e^{-k t}-12$

$$
12=36 e^{-k t}
$$

$$
\frac{12}{36}=e^{-k t}
$$

$$
t=-\frac{1}{k} \ln \left(\frac{12}{36}\right)
$$

$$
\approx-\frac{1}{0.0359} \ln \left(\frac{12}{36}\right)
$$

$$
=30.6 \ldots \approx 31 \mathrm{~min}
$$

(e) (i)

$$
\begin{aligned}
e^{3 x}+e^{3 y} & =\left(e^{x}\right)^{3}+\left(e^{y}\right)^{3} \\
& =\left(e^{x}+e^{y}\right)\left(\left(e^{x}\right)^{2}-e^{x} e^{y}+\left(e^{y}\right)^{2}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
e^{3 x}+e^{3 y} & =\left(e^{x}+e^{y}\right)\left(\left(e^{x}\right)^{2}-e^{x} e^{y}+\left(e^{y}\right)^{2}\right) \\
10 & =3\left(\left(e^{x}\right)^{2}-e^{x} e^{y}+\left(e^{y}\right)^{2}\right) \\
10 & =3\left(\left(e^{x}\right)^{2}+2 e^{x} e^{y}+\left(e^{y}\right)^{2}-3 e^{x} e^{y}\right) \\
10 & =3\left(\left(e^{x}+e^{y}\right)^{2}-3 e^{x} e^{y}\right) \\
10 & =3\left((3)^{2}-3 e^{x+y}\right) \\
e^{x+y} & =\frac{17}{9} \\
x+y & =\ln \left(\frac{17}{9}\right)
\end{aligned}
$$

Question 12

(a) (i) $\frac{O A}{h}=\tan \left(90^{\circ}-46^{\circ}\right)$
$O A=h \tan 44^{\circ}$
(ii) $\quad\left(h \tan 55^{\circ}\right)^{2}=220^{2}+\left(h \tan 44^{\circ}\right)^{2}$
$h^{2}\left(\tan ^{2} 55^{\circ}-\tan ^{2} 44^{\circ}\right)=220^{2}$
$h=\frac{220}{\sqrt{\tan ^{2} 55^{\circ}-\tan ^{2} 44^{\circ}}}$
$=209.09 \ldots$
≈ 209.1
(b) (i) $\angle B E F=\angle E A D$ (corresponding angle on parallel lines, $A D \| E F$)
$\angle E A D+\angle F C B=180$ (Opposite angles of cyclic quad $A B C D$)
$\therefore \angle B E F+\angle F C B=180$
$\therefore E B C F$ is a cyclic quadrilateral (opposite angles are supplementary)
(ii) $\angle G H F=\angle G C B$ (angles in the same segment, cyclic quad $A B C D$)
$\angle E F B=\angle E C B$ (angles in the same segment, in cyclic quad $E B C F$)
$\angle G H F=\angle E F B$
$G H \| E F$
(corresponding angles are equal)
(c) (i) $-3 \leq x \leq 3,0 \leq y \leq 2 \pi$
(ii)

(iii)

$$
\begin{aligned}
x & =2 \cos ^{-1}\left(\frac{y}{3}\right) \\
\frac{x}{2} & =\cos ^{-1}\left(\frac{y}{3}\right) \\
\cos \left(\frac{x}{2}\right) & =\frac{y}{3} \\
y & =3 \cos \left(\frac{x}{2}\right) \\
\therefore f^{-1}(x) & =3 \cos \left(\frac{x}{2}\right)
\end{aligned}
$$

Domain: $0 \leq x \leq 2 \pi$
(iv)

$$
\begin{aligned}
V & =\pi \int_{0}^{\pi} x^{2} d y \\
& =\pi \int_{0}^{\pi}\left(3 \cos \left(\frac{y}{2}\right)\right)^{2} d y \\
& =9 \pi \int_{0}^{\pi} \frac{1+\cos y}{2} d y \\
& =\frac{9 \pi}{2}[y+\sin y]_{0}^{\pi} \\
& =\frac{9 \pi^{2}}{2}
\end{aligned}
$$

Question 13

$$
\text { (a) } \begin{aligned}
\frac{d S}{d t} & =\frac{d S}{d D} \times \frac{d D}{d t} \\
& =2 \pi D \times \frac{d D}{d t} \\
& =2 \pi \times 6 \times 0.005 \\
& \approx 0.19
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\frac{1}{2} v^{2} & =6+4 x-2 x^{2} \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =4-4 x \\
\ddot{x} & =-4(x-1)
\end{aligned}
$$

i.e. \ddot{x} is proportional to x.
(ii) $\quad v=0 \rightarrow 12+8 x-4 x^{2}=0$
$-4\left(x^{2}-2 x-3\right)=0$ $(x-3)(x+1)=0 \rightarrow x=3,-1$ Amplitude $=3-1=2$
(iii) Max speed occur at the centre of motion, at $x=1$,
$v^{2}=12+8(1)-4(1)^{2}$
$v^{2}=16 \rightarrow v_{\text {max }}=4 \mathrm{~m} / \mathrm{s}$
(c) (i) Since $e^{x}>0$ and $\frac{1}{x}$ for $x>0$, $\therefore f^{\prime}(x)=e^{x}+\frac{1}{x}>0$ for $x>0$.
A monotonic increasing function implies 1 to 1 function as there are no turning points.
(ii) The two graphs intersect on the line $y=x$. So α will satisfy
$f(x)=x \rightarrow e^{x}+\ln x=x$.
Hence $e^{x}+\ln x-x=0$
(iii) $x=0.5-\frac{e^{0.5}+\ln 0.5-0.5}{e^{0.5}+\frac{1}{0.5}-1}$

$$
\approx 0.328
$$

(d) Prove $n=1$ is true
$L H S=\frac{3}{1 \times 2 \times 2}=\frac{3}{4} \quad R H S=1-\frac{1}{2 \times 2}=\frac{3}{4}$
Therefore $\mathrm{n}=1$ is true.
Assume $n=k$ is true
$\frac{3}{1 \times 2 \times 2}+\frac{4}{2 \times 3 \times 2^{2}}+\cdots+\frac{k+2}{k(k+1) 2^{k}}=1-\frac{1}{(k+1) 2^{k}}$
Prove $n=k+1$ is true, i.e.

$$
\begin{aligned}
& \frac{3}{1 \times 2 \times 2}+\cdots+\frac{k+2}{k(k+1) 2^{k}}+\frac{k+3}{(k+1)(k+2) 2^{k+1}} \\
&=1-\frac{1}{(k+2) 2^{k+1}}
\end{aligned}
$$

Year 12 CHS 2018 Mathematics Extension 1 (3U) TRIAL Solutions

$$
\begin{aligned}
L H S & =\frac{3}{1 \times 2 \times 2}+\cdots+\frac{k+2}{k(k+1) 2^{k}}+\frac{k+3}{(k+1)(k+2) 2^{k+1}} \\
& =1-\frac{1}{(k+1) 2^{k}}+\frac{k+3}{(k+1)(k+2) 2^{k+1}} \\
& =1-\left[\frac{2(k+2)}{(k+1)(k+2) 2^{k+1}}-\frac{k+3}{(k+1)(k+2) 2^{k+1}}\right] \\
& =1-\frac{2(k+2)-k-3}{(k+1)(k+2) 2^{k+1}} \\
& =1-\frac{k+1}{(k+1)(k+2) 2^{k+1}} \\
& =1-\frac{1}{(k+2) 2^{k+1}} \\
& =R H S
\end{aligned}
$$

$\therefore n=k+1$ is true whenever $n=k$ is true.
\therefore As it is true for $n=1$, by induction, the result is true for $n \geq 1$.

Question 14

(a) $u=4-x^{2} \rightarrow d u=-2 x d x$
$x=2 \rightarrow u=0, \quad x=0 \rightarrow u=4$

$$
\begin{aligned}
\int_{0}^{2} \frac{x}{\sqrt{4-x^{2}}} d x & =-\frac{1}{2} \int_{4}^{0} \frac{1}{\sqrt{u}} d u \\
& =\frac{1}{2} \int_{0}^{4} u^{-\frac{1}{2}} d u=[\sqrt{u}]_{0}^{4}=2-0=2
\end{aligned}
$$

(b) (i) Substitute $q=-3 p$

$$
\begin{aligned}
& T(-a p(-3 p)(p+-3 p), \\
& \left.a\left(2+p^{2}+p(-3 p)+(-3 p)^{2}\right)\right) \\
= & \left(3 a p^{2}(-2 p), \mathrm{a}\left(2+p^{2}-3 p^{2}+9 p^{2}\right)\right) \\
= & \left(-6 a p^{3}, 2 a+7 a p^{2}\right)
\end{aligned}
$$

(ii) Equation of the normal at R is
$x+r y=a r^{3}+2 a r$.
Since it passes through the point T
The coordinates of T satisfies the above equations.

$$
\begin{aligned}
-6 a p^{3}+r\left(2 a+7 a p^{2}\right) & =a r^{3}+2 a r \\
-6 a p^{3}+2 a r+7 a p^{2} r & =a r^{3}+2 a r \\
-6 a p^{3}+7 a p^{2} r & =a r^{3} \\
a r^{3}-7 a p^{2} r+6 a p^{3} & =0 \\
r^{3}-7 p^{2} r+6 p^{3} & =0
\end{aligned}
$$

(iii) The parameters of the three numbers satisfies the cubic equation in (ii).
Sum of roots $=0 \rightarrow p+-3 p+r=0$

$$
-2 p+r=0 \rightarrow r=2 p
$$

Coordinates of R is $\left(2 a(2 p), a(2 p)^{2}\right)$
Coordinates of R is ($4 a p, 4 a p^{2}$)
(c) (i) The projectile passes through the points (c, h) and (d, h)
$h=x \tan \alpha-\frac{g x^{2} \sec ^{2} \alpha}{2 v^{2}}$
$\frac{g x^{2} \sec ^{2} \alpha}{2 v^{2}}-x \tan \alpha+h=0$
Therefore $x=c$ and $x=d$ are the roots of the quadratic equation.
(ii) Sum of the roots

$$
\begin{aligned}
c+d & =-(-\tan \alpha) \div \frac{g \sec ^{2} \alpha}{2 v^{2}} \\
& =\tan \alpha \times \frac{2 v^{2}}{g \sec ^{2} \alpha}=\frac{2 v^{2} \tan \alpha}{g \sec ^{2} \alpha}
\end{aligned}
$$

(iii) Product of roots

$$
c d=h \div \frac{g \sec ^{2} \alpha}{2 v^{2}}=\frac{2 v^{2} h}{g \sec ^{2} \alpha}
$$

Therefore using the result from (ii)

$$
\begin{aligned}
\frac{c+d}{c d} & =\frac{2 v^{2} \tan \alpha}{g \sec ^{2} \alpha} \div \frac{2 v^{2} h}{g \sec ^{2} \alpha} \\
& =\frac{2 v^{2} \tan \alpha}{g \sec ^{2} \alpha} \times \frac{g \sec ^{2} \alpha}{2 v^{2} h}=\frac{\tan \alpha}{h} \\
\therefore \tan \alpha & =\frac{h(c+d)}{c d}
\end{aligned}
$$

(iv) Rearranging $R=\frac{\nu^{2} \sin 2 \alpha}{g}$

$$
\begin{aligned}
v^{2} & =\frac{R g}{\sin 2 \alpha} \\
& =\frac{R g}{\frac{2 t}{1+t^{2}}}(\text { where } t=\tan \alpha) \\
& =\frac{R g}{2 t}\left(1+t^{2}\right) \\
& =\frac{R g}{2}\left(\frac{1}{t}+t\right) \\
& =\frac{R g}{2}\left(\frac{c d}{h(c+d)}+\frac{h(c+d)}{c d}\right) \\
& =\frac{R g}{2}\left(\frac{c d}{h R}+\frac{h R}{c d}\right) \\
& =\frac{\not R g}{2}\left(\frac{c^{2} d^{2}+h^{2} R^{2}}{h \not R^{\prime} c d}\right) \\
\frac{v^{2}}{g} & =\frac{c^{2} d^{2}+h^{2} R^{2}}{2 h c d}
\end{aligned}
$$

