\qquad
\qquad

2018

Mathematics Extension 2

Assessment Task 4

Trial Examination

Examiners~ G. Huxley, G.Rawson, P. Biczo

$\begin{array}{ll}\text { General } & \text { - Reading time }-5 \text { minutes } \\ \text { Instructions }\end{array}$

- Working time - 3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- This test paper must NOT be removed from the examination

Total marks: 100

Section I-10 marks (pages 2-4)

- Attempt Questions 1-10
- Allow about 20 minutes for this section

Section II - 90 marks (pages 5-14)

- Attempt Questions 11-16
- Allow about 1 hour 40 minutes for this section

Section 1

10 marks
Attempt Questions 1-10 Allow about 20 minutes for this section.
Use the multiple choice answer sheet provided for Questions 1 - 10

1. Which of the following is the solution to the quadratic equation:

$$
i x^{2}+x+2 i=0 ?
$$

A $\quad-i,-2 i$
B $\quad-i, 2 i$
C $\quad i,-2 i$
D $\quad i, 2 i$
2. The circle $|z-3-2 i|=2$ is intersected exactly twice by which of the following lines?
A $\quad|z-3-2 i|=|z-5|$
B $\quad|z-i|=|z+1|$
C $\quad \operatorname{Re}(z)=5$
D $\quad \operatorname{Im}(z)=0$
3. Which of the following is the graph of $y=x e^{-x}$?
A

B

C

D

4. A hyperbola has its centre at the origin and its foci on the x-axis.

The distance between the foci is 16 units and the distance between the directrices is 4 units. What is the equation of the hyperbola?
A $\quad \frac{x^{2}}{48}-\frac{y^{2}}{16}=1$
B $\frac{x^{2}}{16}-\frac{y^{2}}{48}=1$
C $\quad \frac{x^{2}}{4}-\frac{y^{2}}{16}=1$
D $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$
5. The polynomial $P(x)=x^{3}-5 x^{2}-8 x+48$ has double integer root at $x=\alpha$. What is the value of α ?
A $\quad \alpha=-3$
B $\quad \alpha=0$
C $\quad \alpha=3$
D $\quad \alpha=4$
6. Let α, β and γ be the roots of the equation $x^{3}+3 x^{2}+4=0$. Which of the following polynomial equations has roots α^{2}, β^{2} and γ^{2} ?
A $x^{3}-9 x^{2}-24 x-4=0$
B $x^{3}-9 x^{2}-12 x-4=0$
C $x^{3}-9 x^{2}-24 x-16=0$
D $\quad x^{3}-9 x^{2}-12 x-16=0$
7. A committee of 5 people is to be chosen from a group of 6 girls and 4 boys. How many different committees could be formed that have at least one boy?
A $\quad\binom{10}{5}-1$
B $\quad\binom{4}{1}+\binom{6}{4}$
C $\quad\binom{4}{1} \times\binom{ 6}{4}$
D $\quad\binom{10}{5}-6$
8. What is the solution to the equation $\frac{x(5-x)}{x-4} \geq-3$?
A $\quad 2 \leq x<4$ or $x \geq 6$
B $\quad 1 \leq x<4$ or $x \geq 5$
C $\quad 4<x \leq 6$ or $x \leq 2$
D $\quad 4>x \leq 5$ or $x \leq 1$
9. Which of the following is an expression for $\int x e^{\frac{x}{2}} d x$?
A $\frac{1}{2} x e^{\frac{x}{2}}-\frac{1}{4} e^{\frac{x}{2}}+c$
B $\frac{1}{2} x e^{\frac{x}{2}}-\frac{1}{2} e^{\frac{x}{2}}+c$
C $\quad 2 x e^{\frac{x}{2}}-2 e^{\frac{x}{2}}+c$
D $\quad 2 x e^{\frac{x}{2}}-4 e^{\frac{x}{2}}+c$
10. The region bounded by $y=x^{2}$, the x-axis and the line $x=2$ is rotated about the line $x=2$.

Using the method of circular discs to calculate the volume generated, which of the following gives the area of the circular cross-section of each disc?
A $\quad \pi y^{2}$
B $\quad \pi x^{2}$
C $\quad 2 \pi-2 \sqrt{y}$
D $\quad \pi(4-4 \sqrt{y}+y)$

Section 2

90 marks
Attempt Questions 11 - 16 Allow about 2 hours and 40 minutes for this section
Answer each question in a separate answer booklet.
All necessary working should be shown in every question.

Question 11 (15 marks) Start a new answer booklet.
(a) (i) Express $1-\sqrt{3} i$ in modulus - argument form.
(ii) Hence, evaluate $(1-\sqrt{3} i)^{4}$, writing your answer in the form $a+b i$, where a and b are real.
(b) On the same Argand diagram, shade the region simultaneously defined by

$$
\begin{aligned}
& 0 \leq \arg (z) \leq \frac{\pi}{3} \\
& |z| \leq 2 \\
& \operatorname{Im}(z) \leq 1
\end{aligned}
$$

(c) (i) Determine all five solutions to the equation

$$
z^{5}=-1
$$

Show these on the Argand diagram.
(ii) Hence, or otherwise, show that $\cos \frac{\pi}{5} \cos \frac{2 \pi}{5}=\frac{1}{4}$.
(d)

Carefully copy the diagram above into your answer booklet, showing the point P representing the complex number z on the Argand diagram.

Mark the following points on your diagram:
(i) $\quad Q$, representing the complex number $\frac{1}{z}$
(ii) $\quad R$, representing the complex number $z-\frac{i}{z}$
(e) It is given that $z=\frac{1}{1+\cos \theta+i \sin \theta}$ where $0 \leq \theta \leq \frac{\pi}{2}$.
(i) Show that $z=\frac{1}{2}-i \frac{1}{2} \tan \frac{\theta}{2}$.
(ii) Hence find $|z|$ and $\arg (z)$.
(a)

The curve shown has equation $f(x)=x^{3}-3 x$.
Copy the curve into your answer booklet. Your sketch should be approximately $\frac{1}{3}$ of a page.
(i) On the same diagram, sketch the curve $y^{2}=x^{3}-3 x$.

Your diagram must clearly indicate any points of intersection with the curve $y=x^{3}-3 x$.
(ii) Sketch the graph of $y=|f(|x|)|$.
(b) Consider the curve $f(x)=\cos ^{-1}\left(e^{x}\right)$.

State the domain and range of the function.
(c) Consider the curve $f(x)=\frac{e^{x}-1}{e^{x}+1}$.
(i) Show that $y=f(x)$ is an odd function.
(ii) Show that $y=f(x)$ is an increasing function.
(iii) Sketch the curve $y=f(x)$, showing clearly any intercepts with the coordinate axes or the equations of any asymptotes.
(iv) Find the values of k for which the equation $\frac{e^{x}-1}{e^{x}+1}=k x$ has 3 real solutions.
(v) Sketch the graph of $y=\frac{e^{x}+1}{e^{x}-1}$.
(vi) Find the equation of the inverse function $y=f^{-1}(x)$.
(a) Consider the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
(i) Calculate the eccentricity and hence find the foci and the directrices of the ellipse
(ii) Derive the equation of the tangent at $P(4 \cos \theta, 3 \sin \theta)$.
(iii) Show that the tangent at P cuts the positive directrix at $M\left(\frac{16 \sqrt{7}}{7}, \frac{21-12 \sqrt{7} \cos \theta}{7 \sin \theta}\right)$
(b) The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci S and S^{\prime}. It is given that the normal at P has equation:

$$
\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}-b^{2} .
$$

The normal at P meets $S S^{\prime}$ at G.
(i) Show that:

$$
P G^{2}=a^{2}\left(1-e^{2}\right)\left(1-e^{2} \cos ^{2} \theta\right)
$$

and that:

$$
P S^{2}=a^{2}(1-e \cos \theta)^{2}
$$

(ii) Hence show that: $\quad P G^{2}=\left(1-e^{2}\right) P S . P S^{\prime}$
(c) The point $P\left(c p, \frac{c}{p}\right)$ with $p>0$ lies on the rectangular hyperbola $x y=c^{2}$ with focus S. The point T divides the interval $P S$ in the ratio 1:2.

(i) Determine the coordinates of T.
(ii) Find the equation of the locus of T as P moves on the hyperbola
(a) Define $P(x)=x^{3}-2 x^{2}+3 x+2$, and let α, β and γ be the roots of $P(x)=0$.
(i) By considering $\alpha^{2}+\beta^{2}+\gamma^{2}$, explain why $P(x)=0$ has only one real solution
(ii) Find the monic polynomial having roots $\alpha \beta, \alpha \gamma, \beta \gamma$.
(b) A sequence is defined by: $a_{1}=5, a_{2}=13$ and $a_{n+2}=5 a_{n+1}-6 a_{n}$ for all natural numbers n.

Show by Mathematical Induction that $a_{n}=2^{n}+3^{n}$.
(c) (i) Show that $a^{2}+9 b^{2} \geq 6 a b$, where a and b are real numbers.
(ii) Hence, or otherwise, show that $a^{2}+5 b^{2}+9 c^{2} \geq 3(a b+b c+a c)$.
(iii) Hence if $a>b>c>0$, show that $a^{2}+5 b^{2}+9 c^{2}>9 b c$.
(d) In the diagram below, two circles intersect at A and B. Chord $Q A$ on one circle is produced to cut the other circle at R. From P, on $A B$ produced, secants are drawn to Q and R, cutting the circles at M and N respectively.

(i) Show that $P M B N$ is a cyclic quadrilateral
(ii) Hence, or otherwise, show that $M Q R N$ is a cyclic quadrilateral
(a) Find $\int \frac{\cos \theta}{\sin ^{5} \theta} d \theta$
(b) Find $\int \frac{d x}{x^{2}+2 x+2}$
(c) (i) Find real numbers a, b and c such that $\frac{9-x}{\left(1+x^{2}\right)(1+x)}=\frac{a x+b}{1+x^{2}}+\frac{c}{1+x}$
(ii) Hence, or otherwise, find $\int \frac{9-x}{\left(1+x^{2}\right)(1+x)} d x$
(d) If $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} \theta d \theta$ where $n \geq 2$
(i) Show that $I_{n}=\frac{n-1}{n} I_{n-2}$
(ii) Hence, or otherwise, evaluate $\int_{0}^{2}\left(4-x^{2}\right)^{\frac{5}{2}} d x$
(a) The region enclosed by the curves $y=\sqrt{x}$ and $y=x$ between $x=0$ and $x=1$ is rotated about the x-axis to form a solid. Use the method of slices to obtain the volume of this solid.
(b) A solid is formed by rotating the region enclosed by the parabola $y^{2}=4 a x$ and the line $x=a$, about the x-axis
Determine the volume of this solid
(c) The region between the curve $y=\frac{6}{\sqrt{4-x^{2}}}$, the x-axis, $x=0$ and $x=1$, is rotated about the line $x=3$.

Give an expression for the integral that will give the volume of the solid that is generated. You DO NOT need to evaluate the integral.
(d) The base of a solid is formed by the area bounded by $y=\cos x$ and $y=-\cos x$ for $0 \leq x \leq \frac{\pi}{2}$.

Vertical cross-sections of the solid taken parallel to the y-axis are in the shape of isosceles triangles with the equal sides of length 1 (one) unit as shown in the diagram.

Find the volume of the solid.

END OF EXAMINATION

Year 122018 Extension 2 Trial Examination Solutions.
$\begin{array}{llllll}\text { Multiple Choice: } & \text { 1. B } & \text { 2. A } & \text { 3.B } & \text { 4.B } & \text { 5.D }\end{array}$
$\begin{array}{lllll}\text { 6. } C & \text { 7.D } & \text { 8.C } & \text { 9.D } & \text { 10.D }\end{array}$

Outcomes Addressed in this Question

E3 uses the relationship between algebraic and geometric representations of complex numbers and of conic sections

Outcome	
	(a) (i) $\|1-\sqrt{3} i\|=\sqrt{1^{2}+(\sqrt{3})^{2}}=2$

E3

$$
\tan \theta=\sqrt{3}
$$

$$
\therefore \arg (1-\sqrt{3} i)=-\frac{\pi}{3}
$$

$$
\therefore 1-\sqrt{3} i=2\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)
$$

(ii) $(1-\sqrt{3} i)^{4}=\left[2\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)\right]^{4}$

$$
=2^{4}\left(\cos \left(-\frac{4 \pi}{3}\right)+i \sin \left(-\frac{4 \pi}{3}\right)\right)
$$

$$
=16\left(\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right)
$$

$$
=16\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)
$$

$$
=-8+8 \sqrt{3} i
$$

(b)
(c) The complex roots of -1 are evenly spaced around the unit circle, with a root at -1 and $\frac{2 \pi}{5}$ radians apart.

The solutions to $z^{5}=-1$ are
$z=-1, \quad \cos \frac{\pi}{5}+i \sin \frac{\pi}{5}, \quad \cos \frac{3 \pi}{5}+i \sin \frac{3 \pi}{5}$,

$$
\cos \left(-\frac{\pi}{5}\right)+i \sin \left(-\frac{\pi}{5}\right), \quad \cos \left(-\frac{3 \pi}{5}\right)+i \sin \left(-\frac{3 \pi}{5}\right)
$$

Marking Guidelines

2 marks : correct solution

1 mark : significant progress towards correct solution

2 marks : correct solution

1 mark : significant progress towards correct solution

2 marks: correct solution
1 marks: substantial progress towards solution

2 marks: correct solution

1 mark: substantial progress towards solution
(d) (i)

(e) $z=\frac{1}{1+\cos \theta+i \sin \theta}$

$$
=\frac{1}{1+\frac{1-t^{2}}{1+t^{2}}+\frac{2 i t}{1+t^{2}}} \text {, where } t=\tan \frac{\theta}{2}
$$

$$
=\frac{1+t^{2}}{1+t^{2}+1-t^{2}+2 i t}
$$

$$
=\frac{1+t^{2}}{2+2 i t}
$$

$$
=\frac{(1+i t)(1-i t)}{2(1+i t)}
$$

$$
=\frac{1-i t}{2}
$$

$$
\therefore z=\frac{1}{2}-i \frac{1}{2} \tan \frac{\theta}{2} \text {. }
$$

(ii) $|z|=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(-\frac{1}{2} \tan \frac{\theta}{2}\right)^{2}}$

E3	$\begin{aligned} & =\sqrt{\frac{1}{4}+\frac{1}{4} \tan ^{2} \frac{\theta}{2}} \\ & =\sqrt{\frac{1}{4}\left(1+\tan ^{2} \frac{\theta}{2}\right)} \\ & =\frac{1}{2} \sqrt{\sec ^{2} \frac{\theta}{2}} \\ & \therefore\|z\|=\frac{1}{2} \sec \frac{\theta}{2} \text { as } 0 \leq \theta \leq \frac{\pi}{2} . \end{aligned}$ From the diagram, $\begin{aligned} & \tan \alpha=\frac{\frac{1}{2} \tan \frac{\theta}{2}}{\frac{1}{2}} \\ & \tan \alpha=\tan \frac{\theta}{2} \quad \alpha=\frac{\theta}{2} \\ & \therefore \arg (z)=-\frac{\theta}{2} \end{aligned}$ Note: for complex number questions, it is often necessary to draw a circle - this is best done using a template or compass. Having a protractor is also an advantage for questions like (c) and (d). In these questions many students did not indicate important properties, which resulted in marks not being able to be awarded, such as: (c) the roots lie on a unit circle and are equally spaced (d), (i) Q lies on a circle of radius $1 / 2$; $\arg (P)=-\arg (Q)$ should be indicated by showing equal sized angles (ii) how R was located - rotations of 90° and addition/ subtraction of vectors by drawing parallelograms should be indicated to demonstrate your method	2 marks : both modulus and argument correct 1 mark: one of above correct

Outcomes Addressed in this Question

E6 combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions
Outcome
(b) Can find $\cos ^{-1}(g(x))$ provided $-1 \leq g(x) \leq 1$. Since $e^{x}>0$, need $e^{x} \leq 1$. This occurs when $x \leq 0$,
\therefore domain is $x \leq 0$ (where x is a real number).
When $x \leq 0,0<e^{x} \leq 1$.
Cos inverse of values between 0 and 1 (including 1) gives answers between 0 and $\frac{\pi}{2}$ (but not including $\frac{\pi}{2}$).
\therefore range is $0 \leq y<\frac{\pi}{2}$ (where y is a real number).

2 marks : correct solution

1 mark : significant progress towards correct solution

2 marks : correct
solution

1 mark : significant progress towards correct solution

2 marks: correct domain and correct range

1 marks: one correct of above
(c) (i) $f(x)=\frac{e^{x}-1}{e^{x}+1}$
$\therefore f(-x)=\frac{e^{-x}-1}{e^{-x}+1}$
$=\frac{\frac{1}{e^{x}}-1}{\frac{1}{e^{x}}+1}$
$=\frac{1-e^{x}}{1+e^{x}}$
$=\frac{-\left(e^{x}-1\right)}{e^{x}+1}$
$=-f(x) \quad \therefore$ odd function
(ii) $f(x)=\frac{e^{x}-1}{e^{x}+1}$
$f^{\prime}(x)=\frac{\left(e^{x}+1\right) e^{x}-\left(e^{x}-1\right) e^{x}}{\left(e^{x}+1\right)^{2}}$

$$
f^{\prime}(x)=\frac{2 e^{x}}{\left(e^{x}+1\right)^{2}}
$$

As $e^{x}>0$ for all values of x and the denominator is positive, $f^{\prime}(x)>0$.
(iii)

(iv) $\frac{e^{x}-1}{e^{x}+1}=k x$ has 3 solutions when the line $y=k x$ intersects the curve $y=\frac{e^{x}-1}{e^{x}+1}$ in three places.
This will occur when the gradient is positive, and the gradient is less than the gradient of the tangent.

Tangent to the curve at $(0,0)$ has gradient

$$
f^{\prime}(0)=\frac{2 e^{0}}{\left(e^{0}+1\right)^{2}}=\frac{1}{2}
$$

1 mark: correct solution

1 mark: correct solution

2 marks : correct solution

1 mark: substantial progress towards solution

2 marks: correct solution
1 mark: substantial progress towards solution

As the line $y=k x$ has gradient k,
$0<k<\frac{1}{2}$
$\left.\begin{array}{|cc|c|l|}\hline \text { E6 } & \begin{array}{rl}\text { (v) Since } \frac{e^{x}+1}{e^{x}-1} \text { is the reciprocal of } \frac{e^{x}-1}{e^{x}+1} \text {, need to draw } \\ y=\frac{1}{f(x)} \text {. Graph drawn in red is } y=\frac{e^{x}+1}{e^{x}-1}\end{array} & \begin{array}{l}\text { 2 marks : correct } \\ \text { solution }\end{array} \\ 1 \text { mark : significant } \\ \text { Erogress towards correct } \\ \text { solution }\end{array}\right]$

Year 12 (2018)	Mathematics Extension 2	AT4 2018 HSC
Question No. 13	Solutions and Marking Guidelines	
Outcomes Addressed in this Question		
E3 uses the relationship between algebraic and geometric representations of complex numbers and of conic sections		
E4 uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections and polynomials		

(b)	(i) At $G, y=-0 \therefore \frac{a x}{\cos \theta}=a^{2}-b^{2}=a^{2} e^{2}$ since it's an ellipse $\begin{aligned} & \therefore x=a e^{2} \cos \theta \\ & \begin{aligned} P G^{2} & =\left(a \cos \theta-a e^{2} \cos \theta\right)^{2}+(b \sin \theta-0)^{2} \\ & =a^{2}\left(\cos ^{2} \theta\left(1-e^{2}\right)^{2}+\frac{b^{2}}{a^{2}} \sin ^{2} \theta\right) \\ & =a^{2}\left(\cos ^{2} \theta\left(1-e^{2}\right)^{2}+\left(1-e^{2}\right) \sin ^{2} \theta\right) \\ & =a^{2}\left(1-e^{2}\right)\left(\cos ^{2} \theta-e^{2} \cos ^{2} \theta+\sin ^{2} \theta\right) \\ & =a^{2}\left(1-e^{2}\right)\left(1-e^{2} \cos ^{2} \theta\right) \\ S= & (a e, 0) \\ P S^{2} & =(a \cos \theta-a e)^{2}+(b \sin \theta-0)^{2} \\ & =a^{2}\left(\cos 2 \theta-2 e \cos \theta+e^{2}+\left(1-e^{2}\right) \sin ^{2} \theta\right) \\ & =a^{2}\left(\cos ^{2} \theta-2 e \cos \theta+e^{2}+\sin ^{2} \theta-e^{2}\left(1-\cos ^{2} \theta\right)\right) \\ & =a^{2}\left(1-2 e \cos \theta+e^{2} \cos ^{2} \theta\right) \\ & =a^{2}(1-e \cos \theta)^{2} \end{aligned} \end{aligned}$ (ii) From (i) $P S=a(1-e \cos \theta)$ Hence $\begin{aligned} P S^{\prime} & =a(1+e \cos \theta) \\ \text { RHS } & =\left(1-e^{2}\right) P S . P S^{\prime} \\ & =\left(1-e^{2}\right)((a)(1-e \cos \theta))((a)(1+e \cos \theta)) \\ & =a^{2}\left(1-e^{2}\right)\left(1-e^{2} \cos ^{2} \theta\right) \\ & =P G^{2}=\text { LHS } \end{aligned}$ (i) $\begin{aligned} & P=\left(c p, \frac{c}{p}\right) \quad S=(c \sqrt{2}, c \sqrt{2}) \\ & T=\left(\frac{2 c p+c \sqrt{2}}{3}, \frac{2 c+c p \sqrt{2}}{3 p}\right) \end{aligned}$ (ii) From T: $p=\frac{3 x-c \sqrt{2}}{2 c}$ and $p=\frac{2 c}{3 y-c \sqrt{2}}$ $\begin{aligned} & \therefore \frac{3 x-c \sqrt{2}}{2 c}=\frac{2 c}{3 y-c \sqrt{2}} \\ & (3 x-c \sqrt{2})(3 y-c \sqrt{2})=4 c^{2} \end{aligned}$ Which is a rectangular hyperbola with asymptotes : $x=\frac{c \sqrt{2}}{3}, \quad y=\frac{c \sqrt{2}}{3}$	(b) (i) 2 marks: Correct solutions 1 mark: 1 of the solutions correct. Note: There was a lot of working required per mark, and it seemed that many students used way too much time on this question. If the first attempt didn't work, it was worth considering moving on and coming back to this question later.. (ii) 2 marks: Correct solution in required form. 1 mark: Relevant progress. (c) (i) 2 marks: Both answers correct. 1 mark: One of the answers correct, or both answers incorrect from only 1 error. (ii) 2 marks: Solution in a form that can be interpreted as a hyperbola. Just substituting for p into one of the x or y values did not gain full marks. 1 mark: A single substitution for p in an attempt to eliminate the parameter.

Outcomes Addressed in this Question

E2 - chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings
E4 - uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving polynomials
E9-communicates abstract ideas and relationships using appropriate notation and logical argument

(b) Let $S(n)$ be the statement $a_{n}=2^{n}+3^{n}$ step 1: Show true for $n=1,2$

$$
\begin{aligned}
& n=1: 2^{1}+3^{1}=5, \text { so } S(1) \text { is true } \\
& n=2: 2^{2}+3^{2}=13, \text { so } S(2) \text { is true }
\end{aligned}
$$ step 2: Assume $S(k), S(k+1)$ are true ie $a_{k}=2^{k}+3^{k}$ and $a_{k+1}=2^{k+1}+3^{k+1}$

step 3: Prove $S(k+2)$ is true ie prove $a_{k+2}=2^{k+2}+3^{k+2}$ LHS $=a_{k+2}$
$=5 a_{k+1}-6 a_{k} \quad$ (given recursive formula)
$=5\left(2^{k+1}+3^{k+1}\right)-6\left(2^{k}+3^{k}\right) \quad$ (by assumption)
$=5.2^{k+1}+5.3^{k+1}-3 \cdot 2 \cdot 2^{k}-3 \cdot 2 \cdot 2^{k}$
$=5.2^{k+1}+5.3^{k+1}-3.2^{k+1}-2.3^{k+1}$
$=2.2^{k+1}+3.3^{k+1}$
$=2^{k+2}+3^{k+2}$
$=$ RHS
Hence $S(k+2)$ is true
$\therefore S(k)$ is true by Mathematical Induction
(c) (i) consider $a^{2}+9 b^{2}-6 a b$

$$
\begin{aligned}
=(a-3 b)^{2} & \geq 0 \\
\therefore a^{2}+9 b^{2}-6 a b & \geq 0 \\
\text { and so } \quad a^{2}+9 b^{2} & \geq 6 a b
\end{aligned}
$$

(ii)

$$
a^{2}+9 b^{2} \geq 6 a b \quad \text { (from (i)) }
$$

$$
\begin{aligned}
\text { so } & b^{2}+9 c^{2} \geq 6 b c \\
\text { and } & a^{2}+9 c^{2} \geq 6 a c
\end{aligned}
$$

adding, $2 a^{2}+10 b^{2}+18 c^{2} \geq 6(a b+b c+a c)$

$$
a^{2}+5 b^{2}+9 c^{2} \geq 3(a b+b c+a c)
$$

(iii) $a^{2}+5 b^{2}+9 c^{2} \geq 3(a b+b c+a c)$

$$
\begin{aligned}
& >3(b c+b c+b c)\binom{a>c \Rightarrow a b>b c}{a>b \Rightarrow a c>b c} \\
& =3(3 b c) \\
& =9 b c
\end{aligned}
$$

ie $a^{2}+5 b^{2}+9 c^{2}>9 b c$
Question 14 continued...
(d)

3 marks: correct

 solution2 mark: substantial progress towards correct solution

1 mark: partial progress towards correct solution

1 mark: correct solution

2 marks: correct solution

1 mark: substantial progress towards correct solution

1 mark: correct solution

Outcomes Addressed in this Question
E8 - applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems

$$
\text { (d) (i) } \begin{aligned}
I_{n} & =\int_{0}^{\frac{\pi}{2}} \sin ^{n} \theta d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \sin ^{n-1} \theta \sin \theta d \theta \\
& \begin{array}{l}
u=\sin ^{n-1} \theta \quad d u=(n-1) \sin ^{n-2} \cos \theta d \theta \quad v=-\cos \theta \\
d
\end{array} \\
I_{n} & =\left[-\cos \theta \sin ^{n-1} \theta\right]_{0}^{\frac{\pi}{2}}+(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} \theta \cos ^{2} \theta d \theta \\
& =0+(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} \theta\left(1-\sin ^{2} \theta\right) d \theta \\
& =(n-1) \int_{0}^{\frac{\pi}{2}}\left(\sin ^{n-2} \theta-\sin ^{n} \theta\right) d \theta \\
& =(n-1) I_{n-2}-(n-1) I_{n} \\
n I_{n} & =(n-1) I_{n-2} \\
I_{n} & =\frac{n-1}{n} I_{n-2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
x & =2 \cos \theta \quad \text { when } x=0, \theta=\frac{\pi}{2} \\
d x & =-2 \sin \theta d \theta \quad \text { when } x=2, \theta=0 \\
\int_{0}^{2}\left(4-x^{2}\right)^{\frac{5}{2}} d x & =-\int_{\frac{\pi}{2}}^{0}\left(4-4 \cos ^{2} \theta\right)^{\frac{5}{2}} \times 2 \sin \theta d \theta \\
& =4^{\frac{5}{2}} \cdot 2 \int_{0}^{\frac{\pi}{2}}\left(\sin ^{2} \theta\right)^{\frac{2}{2}} \cdot \sin \theta d \theta \\
& =64 \int_{0}^{\frac{\pi}{2}} \sin ^{6} \theta d \theta \\
& =64 I_{6} \\
& =64 \times \frac{5}{6} I_{4} \\
& =\frac{160}{3} \times \frac{3}{4} I_{2} \\
& =40 \times \frac{1}{2} I_{0} \\
& =20 \int_{0}^{\frac{\pi}{2}} \sin ^{0} \theta d \theta=20 \int_{0}^{\frac{\pi}{2}} 1 d \theta \\
& =20[\theta]_{0}^{\frac{\pi}{2}} \\
& =20\left[\frac{\pi}{2}-0\right] \\
& =10 \pi
\end{aligned}
$$

3 marks: correct solution

2 mark: substantial progress towards correct solution

1 mark: partial progress towards correct solution

3 marks: correct solution

2 mark: substantial progress towards correct solution

1 mark: partial progress towards correct solution

Year 12 (2	18) Mathematics Extension 2	AT4 2018 HSC
Question N	o. 16 Solutions and Marking Guidelines	
Outcomes Addressed in this Question		
E7 uses the techniques of slicing and cylindrical shells to determine volumes		
Part / Outcome	Solutions	Marking Guidelines
(a)	From $x=0$ to $x=1, y=\sqrt{x}$ is above $y=x$. By slicing, each slice will be a "washer shape" $\begin{aligned} & A(x)=\pi\left(\sqrt{x}^{2}-x^{2}\right)=\pi\left(x-x^{2}\right) \\ & \partial V=\pi\left(x-x^{2}\right) \partial x \\ & \rightarrow V=\pi \int_{0}^{1} x-x^{2} d x=\frac{\pi}{6} \text { units }^{3} \end{aligned}$	(a) 4 marks: Complete solution based upon DAVIE principles. 3 marks: Almost all elements included. 2 marks: Significant progress. 1 mark: Some relevant progress.
(b)	This question is a volume of revolution; each slice is a circle. $\begin{aligned} & \text { Area of slice }=\pi y^{2}=4 a x \pi \\ & \text { Volume }={ }_{\partial x \rightarrow 0}^{\lim } \sum_{x=0}^{a} 4 a x \pi \partial x \\ & V=4 a \pi \int_{0}^{a} x d x=2 \pi a^{3} \text { units }^{3} \end{aligned}$	(b) 3 marks: Complete solution. 2 marks: Substantial progress. 1 mark: Some relevant progress.
(c)	Using cylindrical shells. $\begin{aligned} & r=(3-x) \quad h=y=\frac{6}{\sqrt{4-x^{2}}} \\ & V=\lim _{\partial x \rightarrow 0} \sum_{x=0}^{1} 2 \pi(3-x)\left(\frac{6}{\sqrt{4-x^{2}}}\right) \partial x \\ & V=12 \pi \int_{0}^{1} \frac{3-x}{\sqrt{4-x^{2}}} d x \end{aligned}$	(c) 4 marks: Complete solution based upon DAVIE principles. 3 marks: Almost all elements included. 2 marks: Significant progress. 1 mark: Some relevant progress
(d)	Height of triangular slice $=\sqrt{1-y^{2}}$ Area of triangular slice $=\frac{1}{2} b h=y \sqrt{1-y^{2}}$ Thickness of slice is ∂x $\begin{aligned} A(x) & =\cos x \sqrt{1-\cos ^{2} x}=\cos x \sin x \\ & =\frac{1}{2} \sin 2 x \\ V= & \lim _{\partial x \rightarrow 0} \sum_{x=0}^{\frac{\pi}{2}} \frac{1}{2} \sin 2 x \partial x \\ = & \int_{0}^{\pi / 2} \frac{1}{2} \sin 2 x d x \\ = & \left.-\frac{1}{4} \cos 2 x\right]_{0}^{\pi / 2} \\ = & \frac{1}{2} \text { unit }^{3} \end{aligned}$	(d) 4 marks: Complete solution based upon DAVIE principles. 3 marks: Almost all elements included. 2 marks: Significant progress. 1 mark: Some relevant progress

