STUDENT'S NAME:

TEACHER'S NAME:

HIGHER SCHOOL CERTIFICATE **EXAMINATION**

Mathematics Extension 2 Assessment Task 4

Trial Examination

Examiners~ G. Huxley, G.Rawson, P. Biczo

General	• Reading time – 5 minutes			
Instructions	• Working time – 3 hours			
	• Write using black pen			
	• Board-approved calculators may be used			
	• A reference sheet is provided.			
	• In Questions 11–16, show relevant mathematical			
	reasoning and/or calculations			
	• This test paper must NOT be removed from the			
	examination			
Total marks:	Section I – 10 marks (pages 2–4)			
100	 Attempt Questions 1–10 			
	• Allow about 20 minutes for this section			
	Section II – 90 marks (pages 5–14)			
	Attempt Questions 11–16			
	• Allow about 1 hour 40 minutes for this section			

4. A hyperbola has its centre at the origin and its foci on the *x*-axis. The distance between the foci is 16 units and the distance between the directrices is 4 units. What is the equation of the hyperbola?

A
$$\frac{x^2}{48} - \frac{y^2}{16} = 1$$

B $\frac{x^2}{16} - \frac{y^2}{48} = 1$
C $\frac{x^2}{4} - \frac{y^2}{16} = 1$
D $\frac{x^2}{16} - \frac{y^2}{4} = 1$

5. The polynomial $P(x) = x^3 - 5x^2 - 8x + 48$ has double integer root at $x = \alpha$. What is the value of α ?

A $\alpha = -3$ C $\alpha = 3$ B $\alpha = 0$ D $\alpha = 4$

6. Let
$$\alpha, \beta$$
 and γ be the roots of the equation $x^3 + 3x^2 + 4 = 0$.
Which of the following polynomial equations has roots α^2, β^2 and γ^2 ?

A
$$x^{3}-9x^{2}-24x-4=0$$

B $x^{3}-9x^{2}-12x-4=0$
C $x^{3}-9x^{2}-24x-16=0$
D $x^{3}-9x^{2}-12x-16=0$

7. A committee of 5 people is to be chosen from a group of 6 girls and 4 boys. How many different committees could be formed that have at least one boy?

A
$$\begin{pmatrix} 10\\5 \end{pmatrix} -1$$

B $\begin{pmatrix} 4\\1 \end{pmatrix} + \begin{pmatrix} 6\\4 \end{pmatrix}$
C $\begin{pmatrix} 4\\1 \end{pmatrix} \times \begin{pmatrix} 6\\4 \end{pmatrix}$
D $\begin{pmatrix} 10\\5 \end{pmatrix} -6$

8. What is the solution to the equation $\frac{x(5-x)}{x-4} \ge -3?$

- A $2 \le x < 4$ or $x \ge 6$ B $1 \le x < 4$ or $x \ge 5$
- C $4 < x \le 6 \text{ or } x \le 2$ D $4 > x \le 5 \text{ or } x \le 1$

- 9. Which of the following is an expression for $\int xe^{\frac{x}{2}} dx$?
 - A $\frac{1}{2}xe^{\frac{x}{2}} \frac{1}{4}e^{\frac{x}{2}} + c$ B $\frac{1}{2}xe^{\frac{x}{2}} - \frac{1}{2}e^{\frac{x}{2}} + c$ C $2xe^{\frac{x}{2}} - 2e^{\frac{x}{2}} + c$ D $2xe^{\frac{x}{2}} - 4e^{\frac{x}{2}} + c$
- 10. The region bounded by $y = x^2$, the *x*-axis and the line x = 2 is rotated about the line x = 2. Using the method of circular discs to calculate the volume generated, which of the following gives the area of the circular cross-section of each disc?
 - A πy^2 C $2\pi - 2\sqrt{y}$ B πx^2 D $\pi \left(4 - 4\sqrt{y} + y\right)$

Question 11 (15 marks) Start a new answer booklet. Marks Express $1 - \sqrt{3}i$ in modulus - argument form. (i) 2 (a) Hence, evaluate $(1-\sqrt{3}i)^4$, writing your answer in the form a+bi, (ii) 2 where *a* and *b* are real. On the same Argand diagram, shade the region simultaneously defined by (b) $0 \le \arg(z) \le \frac{\pi}{3}$ $|z| \leq 2$ 2 $\operatorname{Im}(z) \leq 1$ (c) Determine all five solutions to the equation (i) $z^5 = -1$ 2 Show these on the Argand diagram. Hence, or otherwise, show that $\cos\frac{\pi}{5}\cos\frac{2\pi}{5} = \frac{1}{4}$. (ii) 1

Question 11 continues on the next page

Carefully copy the diagram above into your answer booklet, showing the point P representing the complex number z on the Argand diagram.

Mark the following points on your diagram:

(i)
$$Q$$
, representing the complex number $\frac{1}{z}$ 1

(ii) *R*, representing the complex number
$$z - \frac{l}{z}$$
 1

(e) It is given that
$$z = \frac{1}{1 + \cos \theta + i \sin \theta}$$
 where $0 \le \theta \le \frac{\pi}{2}$.

(i) Show that
$$z = \frac{1}{2} - i\frac{1}{2}\tan\frac{\theta}{2}$$
. 2

(ii) Hence find
$$|z|$$
 and $\arg(z)$. 2

2

2

2

The curve shown has equation $f(x) = x^3 - 3x$.

Copy the curve into your answer booklet. Your sketch should be approximately $\frac{1}{3}$ of a page.

(i) On the same diagram, sketch the curve $y^2 = x^3 - 3x$. Your diagram must clearly indicate any points of intersection with the curve $y = x^3 - 3x$.

(ii) Sketch the graph of
$$y = |f(|x|)|$$
.

(b) Consider the curve $f(x) = \cos^{-1}(e^x)$.

State the domain and range of the function.

Question 12 continues on the next page

(c) Consider the curve $f(x) = \frac{e^x - 1}{e^x + 1}$.

(i)	Show that $y = f(x)$ is an odd function.	1
(ii)	Show that $y = f(x)$ is an increasing function.	1
(iii)	Sketch the curve $y = f(x)$, showing clearly any intercepts with the coordinate axes or the equations of any asymptotes.	2

(iv) Find the values of k for which the equation
$$\frac{e^x - 1}{e^x + 1} = kx$$
 has 3 real solutions. 2

(v) Sketch the graph of
$$y = \frac{e^x + 1}{e^x - 1}$$
. 2

(vi) Find the equation of the inverse function
$$y = f^{-1}(x)$$
. 1

Question 13 (15 marks) Start a new answer booklet.

(a) Consider the ellipse
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

(i) Calculate the eccentricity and hence find the foci and the directrices of the ellipse **3**

(ii) Derive the equation of the tangent at $P(4\cos\theta, 3\sin\theta)$.

(iii) Show that the tangent at *P* cuts the positive directrix at $M\left(\frac{16\sqrt{7}}{7}, \frac{21-12\sqrt{7}\cos\theta}{7\sin\theta}\right)$ 2

(b) The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci S and S'. It is given that the normal at P has equation:

 $\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2$

The normal at P meets SS' at G.

(i) Show that:

$$PG^{2} = a^{2}(1-e^{2})(1-e^{2}\cos^{2}\theta)$$

and that:

$$PS^{2} = a^{2} \left(1 - e \cos \theta\right)^{2}$$

(ii) Hence show that: $PG^2 = (1 - e^2)PS.PS'$

Page 9

Marks

2

(c) The point $P\left(cp, \frac{c}{p}\right)$ with p > 0 lies on the rectangular hyperbola $xy = c^2$ with focus *S*. The point *T* divides the interval *PS* in the ratio 1:2.

- (i) Determine the coordinates of *T*.
- (ii) Find the equation of the locus of *T* as *P* moves on the hyperbola

2

Question 14 (15 marks) Start a new answer booklet.

(a) Define
$$P(x) = x^3 - 2x^2 + 3x + 2$$
, and let α , β and γ be the roots of $P(x) = 0$.

(i) By considering
$$\alpha^2 + \beta^2 + \gamma^2$$
, explain why $P(x) = 0$ has only one real solution 1

(ii) Find the monic polynomial having roots
$$\alpha\beta, \alpha\gamma, \beta\gamma$$
. 3

(b) A sequence is defined by:

$$a_1 = 5, a_2 = 13$$
 and $a_{n+2} = 5a_{n+1} - 6a_n$ for all natural numbers *n*.

Show by Mathematical Induction that $a_n = 2^n + 3^n$. 3

(c) (i) Show that
$$a^2 + 9b^2 \ge 6ab$$
, where *a* and *b* are real numbers. 1

(ii) Hence, or otherwise, show that
$$a^2 + 5b^2 + 9c^2 \ge 3(ab+bc+ac)$$
. 2

(iii) Hence if
$$a > b > c > 0$$
, show that $a^2 + 5b^2 + 9c^2 > 9bc$. 1

Question 14 continues on the next page.

Marks

(d) In the diagram below, two circles intersect at *A* and *B*. Chord *QA* on one circle is produced to cut the other circle at *R*. From *P*, on *AB* produced, secants are drawn to *Q* and *R*, cutting the circles at *M* and *N* respectively.

(i) Show that *PMBN* is a cyclic quadrilateral
(ii) Hence, or otherwise, show that *MQRN* is a cyclic quadrilateral
2

Question 15 (15 marks) Start a new answer booklet.

(a) Find
$$\int \frac{\cos\theta}{\sin^5\theta} d\theta$$
 2

(b) Find
$$\int \frac{dx}{x^2 + 2x + 2}$$
 2

Find real numbers a, b and c such that $\frac{9-x}{(1+x^2)(1+x)} = \frac{ax+b}{1+x^2} + \frac{c}{1+x}$ (i) (c) 2

(ii) Hence, or otherwise, find
$$\int \frac{9-x}{(1+x^2)(1+x)} dx$$
 3

(d) If
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n \theta \, d\theta$$
 where $n \ge 2$

(i) Show that
$$I_n = \frac{n-1}{n} I_{n-2}$$
 3

(ii) Hence, or otherwise, evaluate
$$\int_0^2 (4-x^2)^{\frac{5}{2}} dx$$

Marks

Question 16 (15 marks) Start a new answer booklet.

- (a) The region enclosed by the curves $y = \sqrt{x}$ and y = x between x = 0 and x = 1 is rotated about the *x*-axis to form a solid. Use the method of slices to obtain the volume of this solid. 4
- (b) A solid is formed by rotating the region enclosed by the parabola $y^2 = 4ax$ and the line x = a, about the x-axis Determine the volume of this solid
- (c) The region between the curve $y = \frac{6}{\sqrt{4-x^2}}$, the x-axis, x = 0 and x = 1, is rotated about the line x = 3.

Give an expression for the integral that will give the volume of the solid that is generated. You DO NOT need to evaluate the integral.

4

(d) The base of a solid is formed by the area bounded by $y = \cos x$ and $y = -\cos x$

for
$$0 \le x \le \frac{\pi}{2}$$
.

Vertical cross-sections of the solid taken parallel to the *y*-axis are in the shape of isosceles triangles with the equal sides of length 1(one) unit as shown in the diagram.

Find the volume of the solid.

END OF EXAMINATION

Year 12 2018 Extension 2 Trial Examination Solutions.

 Multiple Choice:
 1. B
 2. A
 3. B
 4. B
 5. D

 6. C
 7. D
 8. C
 9. D
 10. D

Year 12 Higher School	Certificate
Question No. 11	Soluti

Mathematics Extension 2

Task 4 2018

Question No. 11 Solutions and Marking Guidelines			
Outcomes Addressed in this Question			
E3 uses the relationship between algebraic and geometric representations of complex numbers and of conic sections			
Outcome	Solutions	Marking Guidelines	
E3	(a) (i) $\left 1 - \sqrt{3}i\right = \sqrt{1^2 + (\sqrt{3})^2} = 2$ $\tan \theta = \sqrt{3}$ $\therefore \arg\left(1 - \sqrt{3}i\right) = -\frac{\pi}{3}$ $\therefore 1 - \sqrt{3}i = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$	2 marks : correct solution 1 mark : significant progress towards correct solution	
E3	(ii) $(1-\sqrt{3}i)^4 = \left[2\left(\cos\left(-\frac{\pi}{3}\right)+i\sin\left(-\frac{\pi}{3}\right)\right)\right]^4$ $= 2^4 \left(\cos\left(-\frac{4\pi}{3}\right)+i\sin\left(-\frac{4\pi}{3}\right)\right)$ $= 16 \left(\cos\left(\frac{2\pi}{3}\right)+i\sin\left(\frac{2\pi}{3}\right)\right)$ $= 16 \left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)$ $= -8+8\sqrt{3}i$	2 marks : correct solution 1 mark : significant progress towards correct solution	
E3	(b) $\frac{1}{2}$	2 marks: correct solution 1 marks: substantial progress towards solution	
E3	(c) The complex roots of -1 are evenly spaced around the unit circle, with a root at -1 and $\frac{2\pi}{5}$ radians apart. $ \frac{1}{2\pi/5} \frac{1}{2\pi/5} \frac{1}{2\pi/5} $ The solutions to $z^5 = -1$ are	2 marks: correct solution 1 mark: substantial progress towards solution	
	$z = -1, \cos\frac{\pi}{5} + i\sin\frac{\pi}{5}, \cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5},$ $\cos\left(-\frac{\pi}{5}\right) + i\sin\left(-\frac{\pi}{5}\right), \cos\left(-\frac{3\pi}{5}\right) + i\sin\left(-\frac{3\pi}{5}\right)$		

ear 12 Hi Juestion N	igher School Certificate Mathematics Extension 2	Task 4 2018
Zuestion r	No. 12 Solutions and Marking Guidelines Outcomes Addressed in this Question	
6 combi	ines the ideas of algebra and calculus to determine the important	features of the graphs of a
wide v	variety of functions	
Dutcome	Solutions	Marking Guidelines
E6	(a) (i) 2^{-1} -	2 marks : correct solution 1 mark : significant progress towards correc solution
E6	(ii) $\begin{array}{c c} & & & & & & \\ & & & & & & & \\ & & & &$	2 marks : correct solution 1 mark : significant progress towards correct solution
E6	(b) Can find $\cos^{-1}(g(x))$ provided $-1 \le g(x) \le 1$. Since $e^x > 0$, need $e^x \le 1$. This occurs when $x \le 0$, \therefore domain is $x \le 0$ (where x is a real number). When $x \le 0$, $0 < e^x \le 1$. Cos inverse of values between 0 and 1 (including 1) gives answers between 0 and $\frac{\pi}{2}$ (but not including $\frac{\pi}{2}$). \therefore range is $0 \le y < \frac{\pi}{2}$ (where y is a real number).	2 marks: correct domain and correct range1 marks: one correct of above

	$e^{x}-1$	
E6	(c) (1) $f(x) = \frac{1}{e^x + 1}$	1 mark: correct solution
	(c) (i) $f(x) = \frac{e^x - 1}{e^x + 1}$ $\therefore f(-x) = \frac{e^{-x} - 1}{e^{-x} + 1}$	
	$\frac{1}{1}$	
	$=\frac{\frac{1}{e^x}-1}{\frac{1}{e^x}+1}$	
	$\frac{1}{e^x} + 1$	
	$=\frac{1-e^x}{1+e^x}$	
	$=\frac{-\left(e^{x}-1\right)}{e^{x}+1}$	
	$=-f(x)$ \therefore odd function	
E6	(ii) $f(x) = \frac{e^x - 1}{e^x + 1}$	1 mark: correct solution
	$f'(x) = \frac{(e^{x}+1)e^{x} - (e^{x}-1)e^{x}}{(e^{x}+1)^{2}}$	
	$\int (x)^{-1} \left(e^{x}+1\right)^{2}$	
	$f'(x) = \frac{2e^x}{\left(e^x + 1\right)^2}$	
	As $e^x > 0$ for all values of x and the denominator is positive, $f'(x) > 0$.	
E6	$\therefore y = f(x)$ is an increasing function	
	(iii) ² 1	2 marks : correct solution
		1 mark: substantial progress towards
	-3 -2 -1 0 1 2 3 \rightarrow	solution
E6	-2-1	2 marks: correct solution
	(iv) $\frac{e^x - 1}{e^x + 1} = kx$ has 3 solutions when the line $y = kx$	1 mark: substantial
	intersects the curve $y = \frac{e^x - 1}{e^x + 1}$ in three places.	progress towards
	This will occur when the gradient is positive, and the	solution
	gradient is less than the gradient of the tangent.	
	Tangent to the curve at (0, 0) has gradient	
	$f'(0) = \frac{2e^0}{\left(e^0 + 1\right)^2} = \frac{1}{2}$	
	As the line $y = kx$ has gradient k,	
	$0 < k < \frac{1}{2}$	
	2	

E6
(v) Since
$$\frac{e^{e} + 1}{e^{e} - 1}$$
 is the reciprocal of $\frac{e^{e} - 1}{e^{e} + 1}$, need to draw
 $y = \frac{1}{f(x)}$. Graph drawn in red is $y = \frac{e^{e} + 1}{e^{e} - 1}$
(vi) Inverse function is $x = \frac{e^{e} - 1}{e^{e} + 1}$.
(vi) Inverse function is $x = \frac{e^{e} - 1}{e^{e} + 1}$.
 $xe^{e} + x = e^{e} - 1$
 $x + 1 = e^{e} - xe^{e}$
 $e^{y} = \frac{x + 1}{1 - x}$
 $\therefore y = \ln(\frac{x + 1}{1 - x})$.
Note:
• More care needs to be taken and more attention paid
to detail in graphs such as (a)(i) & (ii).
(a)(i) stated that points of intersection with the
original curve (when $y = 1$) medded to be clearly
indicated and which curve was above below. Using
different colours is a good way to distinguish between
different colours is a good way to distinguish between
different colours is a good way to distinguish between
different colours is a good way to distinguish between
different colours is a good way to distinguish between
different the benvirontal or approaching a limit.
For a graph out of 2 marks, such as (a)(i) sc (ii) scale should
be indicated on the axey; if a graph is symmetrical the
graph should reflect this.

Year 12 (2	018) Mathematics Extension 2	AT4 2018 HSC		
Question N	6			
E3 uses the sections	Outcomes Addressed in this Question E3 uses the relationship between algebraic and geometric representations of complex numbers and of conic sections			
	cient techniques for the algebraic manipulation required in conic sections and polynomials	lealing with questions such as those		
Part / Outcome	Solutions	Marking Guidelines		
(a)	(i) $\frac{x^2}{16} + \frac{y^2}{9} = 1 \rightarrow a = 4, b = 3$ $e = \frac{\sqrt{7}}{4} \qquad \text{foci} = (\pm \sqrt{7}, 0)$ $\text{directrices:} x = \pm \frac{16}{\sqrt{7}}$	(a)(i) 3marks: All 3 components correct, 1 mark per component.		
	(ii) $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = -\frac{3\cos\theta}{4\sin\theta}$ Tangent: $y - 3\sin\theta = -\frac{3\cos\theta}{4\sin\theta}(x - 4\cos\theta)$ $\rightarrow 4y\sin\theta + 3x\cos\theta = 12$ $\frac{x\cos\theta}{4} + \frac{y\sin\theta}{3} = 1$ (iii) Directain $y = \frac{16}{16\sqrt{7}}$	(ii) 2 marks: Correct solution with working. 1 mark: A correct substitution of all information.		
	(iii) Directrix: $x = \frac{16}{\sqrt{7}} = \frac{16\sqrt{7}}{7}$ Sub into tangent equation: $\frac{16\sqrt{7}\cos\theta}{28} + \frac{y\sin\theta}{3} = 1$ $\frac{y\sin\theta}{3} = \frac{28 - 16\sqrt{7}\cos\theta}{28}$ $y = \frac{84 - 48\sqrt{7}\cos\theta}{28\sin\theta}$ $y = \frac{21 - 12\sqrt{7}\cos\theta}{7\sin\theta}$ As required.	(iii) 2 marks: Correct solution with working. 1 mark: A correct substitution of all information.		

(b)
(i) At
$$G_{y=0}$$
: $\frac{ax}{\cos\theta} = a^2 - b^2 = a^2 e^2$ since it's an ellipse
 $\therefore x = ae^2 \cos\theta$
 $PG^2 = (a\cos\theta - ae^2\cos\theta)^2 + (b\sin\theta - 0)^2$
 $= a^2 \left(\cos^2\theta (1 - e^2)^2 + \frac{b^2}{a^2}\sin^2\theta\right)$
 $= a^2 \left(\cos^2\theta (1 - e^2)^2 + (1 - e^2)\sin^2\theta\right)$
 $= a^2 \left(\cos^2\theta (1 - e^2)^2 + (1 - e^2)\sin^2\theta\right)$
 $= a^2 \left(\cos^2\theta (1 - e^2)^2 + (1 - e^2)\sin^2\theta\right)$
 $= a^2 \left(1 - e^2\right) \left(1 - e^2 \cos^2\theta - e^2 \cos^2\theta + \sin^2\theta\right)$
 $= a^2 \left(1 - e^2\right) \left(1 - e^2 \cos^2\theta\right)$
 $S = (ae, 0)$
 $PS^2 = (a\cos\theta - ae)^2 + (b\sin\theta - 0)^2$
 $= a^2 \left(\cos^2\theta - 2e\cos\theta + e^2 + (1 - e^2)\sin^2\theta\right)$
 $= a^2 \left(\cos^2\theta - 2e\cos\theta + e^2 + (1 - e^2)\sin^2\theta\right)$
 $= a^2 \left(\cos^2\theta - 2e\cos\theta + e^2 + \sin^2\theta - e^2 \left(1 - \cos^2\theta\right)\right)$
 $= a^2 \left(1 - 2e\cos\theta + e^2 \cos^2\theta\right)$
 $= a^2 \left(1 - 2e\cos\theta\right)^2$
(i) From (i) $PS = a(1 - e\cos\theta)$ Hence
 $PS' = a(1 + e\cos\theta)$
 $RHS = (1 - e^2) \left(1 - e^2\cos^2\theta\right)$
 $= PG^2 = LHS$
(i)
 $P = \left(cp, \frac{e}{p}\right) \quad S = \left(c\sqrt{2}, c\sqrt{2}\right)$
 $T = \left(\frac{2cp + c\sqrt{2}}{3}, \frac{2c + cp\sqrt{2}}{3p}\right)$
(ii) From T: $p = \frac{3x - c\sqrt{2}}{2c}$ and $p = \frac{2c}{3y - c\sqrt{2}}$
(j)
(ii) From T: $p = \frac{3x - c\sqrt{2}}{3y - c\sqrt{2}}$ and $p = \frac{2c}{3y - c\sqrt{2}}$
(j) 2 marks: Both answers correct, or both answers incorrect form only 1 error.
(ii) From T: $p = \frac{3x - c\sqrt{2}}{3y - c\sqrt{2}}$
Which is a rectangular hyperbola with asymptotes :
 $x = \frac{c\sqrt{2}}{3}, \quad y = \frac{c\sqrt{2}}{3}$
Which is a rectangular hyperbola with asymptotes :
 $x = \frac{c\sqrt{2}}{3}, \quad y = \frac{c\sqrt{2}}{3}$

Year 12	Mathematics Extension 2	Task 4 (TRIAL) 2018	
Question No. 14 Solutions and Marking Guidelines			
	Outcomes Addressed in this Question		
E4 - uses eff polynomials	 E2 - chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings E4 - uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving polynomials E9 - communicates abstract ideas and relationships using appropriate notation and logical argument 		
Outcome	Solutions	Marking Guidelines	
E4, E9	(a) (i) $P(x) = x^3 - 2x^2 + 3x + 2$ $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$ $= 2^2 - 2(3)$ = -2 If α , β , γ are all real, then $\alpha^2 + \beta^2 + \gamma^2 > 0$, which is not true, so there is at least one complex root.	<u>1 mark:</u> correct solution. <u>Full</u> explanation needed	
E4	The coefficients of $P(x)$ are all rational, so complex roots occur in conjugate roots. \therefore there are two complex roots and one real root . (ii) $\alpha\beta\gamma = -\frac{d}{a} = -2$		
	roots $\alpha\beta$, $\alpha\gamma$, $\beta\gamma$ become $\alpha\beta = -\frac{2}{\gamma}$, $\alpha\gamma = -\frac{2}{\beta}$, $\beta\gamma = -\frac{2}{\alpha}$ so let $y = -\frac{2}{x} \Rightarrow x = -\frac{2}{y}$ $P(x) = x^3 - 2x^2 + 3x + 2$ $P\left(-\frac{2}{y}\right) = \left(-\frac{2}{y}\right)^3 - 2\left(-\frac{2}{y}\right)^2 + 3\left(-\frac{2}{y}\right) + 2$ $0 = -\frac{8}{y^3} - \frac{8}{y^2} - \frac{6}{y} + 2$ $0 = -8 - 8y - 6y^2 + 2y^3$ $P(y) = y^3 - 3y^2 - 4y - 4$ (monic)	 3 marks: correct solution (must be monic) 2 mark: substantial progress towards correct solution 1 mark: partial progress towards correct solution 	
	Question 14 continued		

E2, E9	(b) Let $S(n)$ be the statement $a_n = 2^n + 3^n$	
	step 1: Show true for $n = 1,2$	<u>3 marks</u> : correct
	$n = 1: 2^{1} + 3^{1} = 5$, so $S(1)$ is true	solution
	$n = 2: 2^2 + 3^2 = 13$, so $S(2)$ is true	<u>2 mark</u> : substantial
	step 2: Assume $S(k), S(k+1)$ are true	progress towards correct solution
	ie $a_k = 2^k + 3^k$ and $a_{k+1} = 2^{k+1} + 3^{k+1}$	1 montes portial program
	step 3: Prove $S(k+2)$ is true	<u>1 mark:</u> partial progress towards correct solution
	ie prove $a_{k+2} = 2^{k+2} + 3^{k+2}$	
	$LHS = a_{k+2}$	
	$=5a_{k+1}-6a_k$ (given recursive formula)	
	$= 5(2^{k+1} + 3^{k+1}) - 6(2^{k} + 3^{k}) $ (by assumption)	
	$= 5.2^{k+1} + 5.3^{k+1} - 3.2.2^{k} - 3.2.2^{k}$	
	$= 5.2^{k+1} + 5.3^{k+1} - 3.2^{k+1} - 2.3^{k+1}$	
	$= 2.2^{k+1} + 3.3^{k+1}$	
	$= 2^{k+2} + 3^{k+2}$	
	= RHS	
	Hence $S(k+2)$ is true	
	$\therefore S(k)$ is true by Mathematical Induction	
E2	(c) (i) consider $a^2 + 9b^2 - 6ab$	
	$=(a-3b)^2 \ge 0$	<u>1 mark:</u> correct
	$\therefore a^2 + 9b^2 - 6ab \ge 0$	solution
	and so $a^2 + 9b^2 \ge 6ab$	
	(ii) $a^2 + 9b^2 \ge 6ab$ (from (i))	<u>2 marks:</u> correct solution
	so $b^2 + 9c^2 \ge 6bc$ and $a^2 + 9c^2 \ge 6ac$	solution
	and $a^{2} + 9c^{2} \ge 6ac^{2}$ adding, $2a^{2} + 10b^{2} + 18c^{2} \ge 6(ab + bc + ac)$	<u>1 mark:</u> substantial progress towards correct
	adding, $2a + 10b + 13c \ge 0(ab + bc + ac)$ $a^2 + 5b^2 + 9c^2 \ge 3(ab + bc + ac)$	solution
	$a + 3b + 9c \ge 5(ab + bc + ac)$	
	(iii) $a^2 + 5b^2 + 9c^2 \ge 3(ab + bc + ac)$	
	$> 3(bc + bc + bc) \begin{pmatrix} a > c \Rightarrow ab > bc \\ a > b \Rightarrow ac > bc \end{pmatrix}$	<u>1 mark:</u> correct
		solution
	=3(3bc)	
	=9bc is $a^2+5b^2+9c^2>9bc$	
	Question 14 continued	
E2	(d)	
L	1	

Veer 12	Mathematics	Texton air and a	$T_{aclt} 4 (TDIAI) 2019$
Year 12Mathematics Extension 2Question No. 15Solutions and Marking Guidelines			Task 4 (TRIAL) 2018
Outcomes Addressed in this Question			
E8 - applie		n, including partial fractions, integr	ration by parts and
recurrence	formulae, to problems		• •
Outcome	Solu	itions	Marking Guidelines
	(a) $I = \int \frac{\cos \theta}{\sin^5 \theta} d\theta$ $= \int \frac{du}{u^5} = \int u^{-5} du$ $= \frac{u^{-4}}{-4} + c$ $= -\frac{1}{4\sin^4 \theta} + c$ (b) $I = \int \frac{dx}{x^2 + 2x + 2}$ $= \int \frac{dx}{(x+1)^2 + 1}$ $= \tan^{-1}(x+1) + c$	let $u = \sin \theta$ $du = \cos \theta d\theta$	 <u>2 marks</u>: correct solution <u>1 mark</u>: partial progress towards correct solution <u>2 marks</u>: correct solution <u>1 mark</u>: partial progress towards correct solution
	(c) (i) $\frac{9-x}{(1+x^2)(1+x)} = \frac{ax+b}{1+x^2} + \frac{ax+b}$	$\begin{aligned} &(1+x) + c(1+x^2) \\ &c = 5 \\ &b = 4 \\ &a = -5 \end{aligned}$	2 marks: correct solution 1 mark: partial progress towards correct solution
	$=4 \tan^{-1}$	$\frac{5x+4}{1+x^{2}} + \frac{5}{1+x} dx$ $\frac{4}{1+x^{2}} dx - \int \frac{5x}{1+x^{2}} dx + \int \frac{5}{x+1} dx$ $\frac{5}{1+x^{2}} dx - \int \frac{5x}{1+x^{2}} dx + \int \frac{5}{x+1} dx$ $\frac{5}{2} \ln (x^{2}+1) + 5 \ln (x+1) + c$ $\frac{5}{2} \ln \left(\frac{(x+1)^{2}}{x^{2}+1} \right) + c$	 <u>3 marks:</u> correct solution <u>2 mark:</u> substantial progress towards correct solution <u>1 mark:</u> partial progress towards correct solution
	Question 15 continued		

(d) (i)
$$I_n = \int_{0}^{\frac{\pi}{2}} \sin^n \theta \, d\theta$$

 $= \int_{0}^{\frac{\pi}{2}} \sin^{n-1} \theta \sin \theta \, d\theta$
 $\left| u = \sin^{n-1} \theta - 1 \right| \left| u = \sin^{n-1} \theta - 1 \right| \left| u = \sin^{n-1} \theta - 1 \right| \left| u = 1 \right| \left| u$

Year 12 (2018)Mathematics Extension 2		AT4 2018 HSC		
Question No. 16 Solutions and Marking Guidelines Outcomes Addressed in this Ouestion				
E7 uses the	Outcomes Addressed in this Question E7 uses the techniques of slicing and cylindrical shells to determine volumes			
Part / Outcome	Solutions	Marking Guidelines		
(a)	From $x = 0$ to $x = 1$, $y = \sqrt{x}$ is above $y = x$. By slicing, each slice will be a "washer shape" $A(x) = \pi \left(\sqrt{x^2 - x^2}\right) = \pi \left(x - x^2\right)$ $\partial V = \pi \left(x - x^2\right) \partial x$ $\rightarrow V = \pi \int_0^1 x - x^2 dx = \frac{\pi}{6}$ units ³	 (a) 4 marks: Complete solution based upon DAVIE principles. 3 marks: Almost all elements included. 2 marks: Significant progress. 1 mark: Some relevant progress. 		
(b)	This question is a volume of revolution; each slice is a circle. Area of slice = $\pi y^2 = 4ax\pi$ Volume = $\lim_{\partial x \to 0} \sum_{x=0}^{a} 4ax\pi \partial x$ $V = 4a\pi \int_{0}^{a} x dx = 2\pi a^3$ units ³	 (b) 3 marks: Complete solution. 2 marks: Substantial progress. 1 mark: Some relevant progress. 		
(c)	Using cylindrical shells. $r = (3 - x) \qquad h = y = \frac{6}{\sqrt{4 - x^2}}$ $V = \lim_{\partial x \to 0} \sum_{x=0}^{1} 2\pi (3 - x) \left(\frac{6}{\sqrt{4 - x^2}}\right) \partial x$ $V = 12\pi \int_{0}^{1} \frac{3 - x}{\sqrt{4 - x^2}} dx$	 (c) 4 marks: Complete solution based upon DAVIE principles. 3 marks: Almost all elements included. 2 marks: Significant progress. 1 mark: Some relevant progress 		
(d)	Height of triangular slice = $\sqrt{1-y^2}$ Area of triangular slice = $\frac{1}{2}bh = y\sqrt{1-y^2}$ Thickness of slice is ∂x $A(x) = \cos x\sqrt{1-\cos^2 x} = \cos x \sin x$ $= \frac{1}{2}\sin 2x$ $V = \lim_{\partial x \to 0} \sum_{x=0}^{\frac{\pi}{2}} \frac{1}{2}\sin 2x \partial x$ $= \int_0^{\frac{\pi}{2}} \frac{1}{2}\sin 2x dx$ $= -\frac{1}{4}\cos 2x \int_0^{\frac{\pi}{2}}$ $= \frac{1}{2}\text{unit}^3$	 (d) 4 marks: Complete solution based upon DAVIE principles. 3 marks: Almost all elements included. 2 marks: Significant progress. 1 mark: Some relevant progress 		