

Penrith Selective High

School

2018

Higher School Certificate
Trial Examination

Mathennatics Extension

General instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using black or blue pen.
- NESA approved calculators may be used.
- A reference sheet is provided with this examination paper.
- In questions 11-14, show relevant mathematical reasoning and/or calculations.
- No correction tape to be used.

Total marks:
70

Section I-10 marks (pages 1-4)

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - 60 marks (pages 5-8)

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

	Preliminary	Polynomials	Binomial Theorem	Inverse Trigonometry	Calculus	Probability	Mathematical Induction
$\begin{gathered} \text { MC Q1- } \\ 10 \end{gathered}$	Q1,3 4,5 14			$\begin{array}{r} \hline \text { Q6, } 7,9 \\ 13 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Q} 2,10 \\ \mathrm{I} 2 \end{array}$	$\begin{array}{r} \hline \text { Q8 } \\ \text { /1 } \end{array}$	
Question 11	$\begin{array}{r} \mathrm{a} \\ 13 \end{array}$			$\begin{array}{r} \mathrm{f} \\ / 3 \end{array}$	$\begin{array}{r} \hline b, c, d \\ 18 \end{array}$	$\begin{array}{r} \text { e } \\ \text { /1 } \end{array}$	
Question 12	$\begin{array}{r} a, b \\ \hline 16 \\ \hline \end{array}$		$\begin{array}{r} \text { d } \\ / 3 \end{array}$	$\begin{array}{r} \mathrm{C} \\ \mathrm{I} 6 \end{array}$			
Question 13	$\begin{gathered} \mathrm{d} \\ / 3 \end{gathered}$	$\begin{gathered} \mathrm{b} \\ 15 \end{gathered}$		$\begin{array}{r} \mathrm{a}, \mathrm{c} \\ 17 \end{array}$			
Question 14					$\begin{array}{r} a, b \\ 18 \end{array}$	$\begin{gathered} \text { C } \\ 14 \end{gathered}$	$\begin{array}{r} \mathrm{d} \\ 13 \end{array}$
Total	/16	15	13	/19	/18	/6	13

Student Number:

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 The point P divides the interval from $A(-7,6)$ and $B(4,-6)$ externally in the ratio 2: 3 .
What is the x-coordinate of P ?
(A) $\quad-29$
(B) 15
(C) 20
(D) 22

2 What is the value of $\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x}$?
(A) 0
(B) $\frac{3}{5}$
(C) 1
(D) $\frac{5}{3}$

3 The Cartesian equation of the tangent, at $t=-2$, to the parabola $x=t-4$, $y=t^{2}+5$ is:
(A) $4 x-y+15=0$
(B) $4 x+y-15=0$
(C) $4 x-y-15=0$
(D) $4 x+y+15=0$

4 What are the asymptotes of

$$
y=\frac{5 x}{(x+7)(3 x-1)}
$$

(A) $y=0, x=-7, x=\frac{1}{3}$
(B) $y=0, x=7, x=-\frac{1}{3}$
(C) $y=5, x=-7, x=-\frac{1}{3}$
(D) $y=5, x=-7, x=\frac{1}{3}$

5 Two secants from an external point P cut off intervals on a circle as shown below.

What is the value of x ?
(A) $\frac{1}{2}$
(B) $\frac{1+\sqrt{69}}{2}$
(C) $\frac{3}{2}$
(D) 6

6 Which of the following is the derivative of $\tan ^{-1}\left(e^{-2 x}\right)$?
(A) $\frac{e^{2 x}}{1+e^{2 x}}$
(B) $\frac{-e^{-2 x}}{1+e^{-2 x}}$
(C) $\frac{-2 e^{-2 x}}{1+e^{4 x}}$
(D) $\frac{-2 e^{-2 x}}{1+e^{-4 x}}$

7 Let $|b| \leq 1$. What is the general solution to $\cos \frac{x}{3}=b$?
(A) $k \pi \pm \cos ^{-1} b$
(B) $2 k \pi \pm 3 \cos ^{-1} b$
(C) $4 k \pi \pm \cos ^{-1} b$
(D) $6 k \pi \pm 3 \cos ^{-1} b$

8 Adrian, Bryson and six friends arrange themselves at random in a circle. What is the probability that Adrian and Bryson are not together?
(A) $\frac{1}{5040}$
(B) $\frac{5}{7}$
(C) $\frac{2}{7}$
(D) $\frac{5039}{5040}$

9 The primitive function of $\frac{1}{x^{2}-6 x+12}$ is:
(A) $\ln \left(x^{2}-6 x+12\right)+C$
(B) $\frac{1}{3} \tan ^{-1}\left(\frac{x-3}{3}\right)+C$
(C) $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x-3}{\sqrt{3}}\right)+C$
(D) $\frac{1}{9} \tan ^{-1}\left(\frac{x-3}{9}\right)+C$

10 Given that $\frac{g \prime(x)}{g(x)}=2$, which of the following statements are true?
(Note: C is a constant in each case)
(A) $g(x)=e^{x}+C$
(B) $g(x)=e^{2 x} \times C$
(C) $g(x)=2 \ln x+C$
(D) $g(x)=C \ln x$

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question on a SEPARATE booklet.
In Questions 11-14, your responses should include relevant mathematical reasonings and/or calculations.

Question 11 (15 marks)
(a) Solve the inequality: $\frac{5 x}{x-2} \leq 4$
(b) Find $\int \cos ^{2} 6 x d x$
(c) Evaluate $\int_{0}^{2} \frac{3 x}{(3 x+1)^{2}} d x$ by using the substitution $u=3 x+1$.
(d) A circular oil slick lies on the surface of a body of water. Its area is increasing at the rate of $16 \mathrm{~m}^{2} / \mathrm{min}$. At what rate is the radius increasing at the time the radius is 5 metres to 2 decimal places ?
(e) Colour blindness affects 8% of all men. What is the expression of the probability that any random sample of 14 males should contain exactly 6 males that are colour blind?
(f) The shaded area shown in the diagram below is bounded by the x-axis, $y=\sin ^{-1} x$ and the line $x=\frac{1}{2}$.

Find the exact value of the shaded area.

End of Question 11

(a) $A B C$ is a triangle inscribed in a circle. $P A$ is a tangent to the circle. $P Q$ is drawn parallel to $A B$ and meets $B C$ produced to Q.
Copy the diagram into your booklet.

Prove $A P Q C$ is a cyclic quadrilateral.
(b) $\quad P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola 4ay $=x^{2}$ such that the tangents at P and Q intersect at an angle of 45°. Let T be the point of intersection. The tangent at P is $y=p x-a p^{2}$. (DO NOT PROVE THIS).
i) Show that $p-q=1+p q$
ii) Find the locus of T.
(c) i) Sketch the curve $y=\cos ^{-1}\left(\frac{x-2}{2}\right)$
ii) Show that when this curve is rotated about the y-axis , the volume of solid of revolution generated is $6 \pi^{2}$ cubic units.
(d) Show that

$$
\binom{n}{0}+2\binom{n}{1}+3\binom{n}{2}+\ldots \ldots+(n+1)\binom{n}{n}=(n+2) 2^{n-1}
$$

End of Question 12

(a) Find the exact value of $\sin \left(\cos ^{-1} \frac{2}{3}+\tan ^{-1}\left(-\frac{3}{4}\right)\right)$
(b) A monic cubic polynomial when divided by $x^{2}+7$ leaves a remainder of $x+12$ and when divided by x leaves a remainder of -6 .
i) Find the polynomial in the form $a x^{3}+b x^{2}+c x+d$.
ii) The polynomial above has a root close to $x=1$. Using one application of Newton's Method, give a better approximation to 2 decimal places.
(c) Siranjeeve buys a 2 metre tall LCD television screen for his cinema room. He mounts it on a vertical wall, placing it so that the base of the television is 3 metres above his horizontal eye line from where he sits in his favourite armchair. Let the distance from his eye to the wall be x metres and the angle from his eye to the top and base of the television be α (the viewing angle).
Let θ be the angle of elevation to the base of the television.
i) Show that the angle of vision α is given by

$$
\alpha=\tan ^{-1}\left(\frac{5}{x}\right)-\tan ^{-1}\left(\frac{3}{x}\right)
$$

ii) Show that for a maximum viewing angle $\alpha, x=\sqrt{15}$ metres.
iii) Hence, find the maximum viewing angle α, to the nearest degree.
(d) Solve for x : $\quad \log _{\frac{1}{2}}\left(\frac{1}{x}\right) \geq \log _{2}(4 x-1)$

End of Question 13

(a) A certain particle moves along the x-axis according to the equation $t=4 x^{2}-6 x+3$ where x is measured in centimetres and t in seconds. Initially the particle is 1.5 cm to the right of the origin O and moving away from O.
i) Prove that the velocity, $v \mathrm{cms}^{-1}$ is given by $v=\frac{1}{8 x-6}$.

$$
\frac{d T}{d t}=-k(T-R)
$$

ii) A metal cake tin is removed from an oven at a temperature of $190^{\circ} \mathrm{C}$. If the cake tin takes five minutes to cool to $85^{\circ} \mathrm{C}$ and the room temperature is $25^{\circ} \mathrm{C}$, find the time (to the nearest minute) it takes for the cake tin to cool to $63^{\circ} \mathrm{C}$.
(Assume that the cake tin cools at a rate proportional to the difference between the temperature of the cake tin and the temperature of the surrounding air.)
(c) A die is biased so that in any single throw the probability of an odd number is p where p is a constant such that $0<p<1, p \neq 0.5$.
i) Show that in six throws of the die the probability of at most one even number is $6 p^{5}-5 p^{6}$.
ii) Find the probability that in six throws of the die the product of the scores is even.
(d) Prove by Mathematical Induction

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}, \text { for all integers } n \geq 1
$$

End of Question 14

End of Examination

Find the value of k such that $\tan ^{-1}(k)+\tan ^{-1}\left(\frac{3}{5}\right)=\frac{\pi}{4}$
In the expansion of $\left(x^{3}+\frac{1}{x}\right)^{7}$, does the expression contain a constant term?

A particle is moving in a straight line. At time t seconds it has displacement \boldsymbol{x} metres where from a fixed point O on the line, velocity $\boldsymbol{v} \boldsymbol{m s}^{-1}$ given by $v=\cos ^{2} x$ and acceleration $a \mathrm{~ms}^{-2}$. The particle starts at 0 .
i) Find expressions for \boldsymbol{a} in terms of \boldsymbol{x} for \boldsymbol{x} in terms of \boldsymbol{t}
ii) Sketch the graph of \boldsymbol{x} against \boldsymbol{t}.
ii) Describe the motion of the particle from its initial position to its limiting position.
i) Show that the function $T=R+A e^{-k t}$ is a solution to the differential equation

$$
\frac{d T}{d t}=-k(T-R)
$$

ii) A metal cake tin is removed from an oven at a temperature of $190^{\circ} \mathrm{C}$. If the cake tin takes ten minutes to cool to $155^{\circ} \mathrm{C}$ and the room temperature is $25^{\circ} \mathrm{C}$, find the time (to the nearest minute) it takes for the cake tin to cool to $90^{\circ} \mathrm{C}$.
(Assume that the cake tin cools at a rate proportional to the difference between the temperature of the cake tin and the temperature of the surrounding air.)

Examination: TRIAL HSC.
M.C. $1 A 2 B$ 3D $4 A 5 A$ 6D7D8B9C10B

Markers Comments
(o) $\frac{5 x}{x-2} \leqslant 4 \quad x \neq 2$

$$
5 x(x-2) \leqslant 4(x-2)^{2}
$$

$$
5 x(x-2)-4(x-2)^{2} \leqslant 0
$$

$$
(x-2)[5 x-4(x-2)] \leqslant 0
$$

$$
(x-2)(x+8) \leqslant 0
$$

$$
\begin{equation*}
-8 \leqslant x<2 \tag{1}
\end{equation*}
$$

(b)

$$
\begin{align*}
\int \cos ^{2} 6 x d x & =\frac{1}{2} \int(1+\cos 12 x) d x \tag{1}\\
& =\frac{1}{2}\left(x+\frac{1}{12} \sin 12 x\right)+C \\
& =\frac{1}{2} x+\frac{1}{24} \sin 12 x+C \tag{1}
\end{align*}
$$

(c) $u=3 x+1$ when $x=2, u=7$

$$
\begin{align*}
\frac{d u}{d x}=3 \\
\begin{aligned}
& d u=3 d x \\
& \int_{0}^{2} \frac{3 x}{(3 x+1)^{2}} d x=\frac{1}{3} \int_{1}^{7} \frac{u-1}{u^{2}} d u \\
&=\frac{1}{3} \int_{1}^{7}\left(\frac{1}{u}-\frac{1}{u^{2}}\right) d u \\
&=\frac{1}{3} \int^{7}\left(\frac{1}{u}-u^{-2}\right) d u \\
&=\frac{1}{3}\left[\ln u+u^{-1}\right]_{1}^{7} \\
&=\frac{1}{3}\left[\ln 7+\frac{1}{7}-(\ln 1+1)\right] \\
&=\frac{1}{3}\left(\ln 7-\frac{6}{7}\right)
\end{aligned}
\end{align*}
$$

Examination: Trial
Level: EX! !
Year: 2018
2/2
QUESTION:
Markers Comments
(d) $A=\pi r^{2}$
$d A$

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{d r}{d A} \times \frac{d A}{d t} \\
& =\frac{1}{2 \pi r} \times 16 \\
& =\frac{16}{2 \pi r}
\end{aligned}
$$

when $r=5, \frac{d r}{d t}=\frac{16}{10 \pi}$

$$
=\frac{8}{5 \pi}
$$

$$
=0.51
$$

\therefore radius 1 s increasing at $0.51 \mathrm{~m} / \mathrm{min}$
(e)
$q=$ men who areit colourblind $=0.92$

$$
\begin{aligned}
& *\left(\frac{2}{\sqrt{3}}-1\right)=1 \text { mark only } \quad * \frac{\pi}{12}+\frac{\sqrt{3}}{2}=2 \text { marks only. } \\
& *\left(1-\frac{\sqrt{3}}{2}\right)=2 \text { marks only }
\end{aligned}
$$

$$
\begin{align*}
& P(\underset{\text { exactly }}{\text { are Cousblind }} 6 \text { men }) ~=~{ }^{14} C_{6}(0.08)^{6}(0.92)^{8} \\
& \text { Area }=\int_{0}^{\pi / 2} \sin ^{-1} x d x=\begin{array}{c}
\text { Area } \\
\text { rectangle }
\end{array}-\int_{0}^{\pi / 6} \sin x d x \\
& =\frac{\pi}{6} \times \frac{1}{2}-[-\cos x]_{0}^{\pi / 6} \\
& =\frac{\pi}{12}-\left(-\cos \frac{\pi}{6}-\cos 0\right) \\
& =\frac{\pi}{12}-(-\sqrt{3} / 2+1) \\
& =\frac{\pi}{12}+\frac{\sqrt{3}}{2}-1 \\
& =\frac{\pi+6 \sqrt{3}-12}{12} \tag{1}
\end{align*}
$$

Examination: EXTENSION 1 TRIAL HSC
Level: EXTENSION 1
Year: 2018
(a) Let $\angle R A B=\alpha$
$\angle R A B=\angle B C A$ (angle in the alternate segment)
$\angle Q C A=180-\alpha$ (straight angle)
Let $\angle P A C=\beta$
$\angle P A C=\angle A B C$ (angle in the alternate
segment)
$\angle P Q B=180-\beta$ (co-uiterier angles are supplementary $Q \rho \| A B$)

Most students died this well
$\therefore \angle P A C+\angle Q P C$ are supplementary.
$\therefore A P Q C$ is a cyclic quadrilateral.
(b) i)

$$
\begin{gathered}
4 a y=x^{2} \\
y=\frac{x^{2}}{4 a} \\
y^{\prime}=\frac{x}{2 a} \\
m_{1}=y^{\prime}(p) \\
=\frac{2 a f}{2 a}=P
\end{gathered}
$$

Simiarly, $m_{2}=q$

$$
\begin{aligned}
\tan 45^{\circ} & =\left|\frac{p-q}{1+p z}\right| \\
1 & =\left|\frac{p-q}{1+p q}\right| \\
\therefore p-q & =1+p q
\end{aligned}
$$

ii) The tangent at β is $y=p x-a \rho^{2} \ldots$ (1) imfaily at Q :

$$
y=q x-a q^{2} \ldots(2)
$$

(1)-(2):

$$
\begin{aligned}
(p-q) x-a\left(p^{2}-q^{2}\right) & =0 \\
x & =\frac{a(p-q)(p+q)}{p-q}=a(p+q) \\
y & =a p(p+q)-a p^{2} \\
& =a p 2+a p \varepsilon-a p^{2} \\
u & =a \Delta c .
\end{aligned}
$$

Most students were able to use angle between two lines.

Examination: TRIAL MATHS
Level: EXTENSTON I
Year: Dor.
QUESTION: 12
b) continued.

From (i):

$$
\begin{aligned}
(1+p q)^{2} & =(p-q)^{2} \\
& =(p+q)^{2}-4 p q
\end{aligned}
$$

Locus: $\left(1+\frac{y}{a}\right)^{2}=\left(\frac{x}{a}\right)^{2}-\frac{4 y}{a}$

$$
\therefore a^{2}+y^{2}+6 a y=x^{2}
$$

Only fer students were able to find le equation of the locus.
(c) Domain: $-1 \leq \frac{x-2}{2} \leq 1$, Range $0 \leq y \leq \pi$.

$$
\begin{aligned}
-2 & \leq x-2 \leq 2 \\
0 & \leq x \leq 4
\end{aligned}
$$

$\cos y=\frac{x-2}{2}$

$$
\begin{aligned}
& x-2=2 \cos y \\
& x=2 \cos y+2 \\
& x^{2}=(2 \cos y+2)^{2} \\
&=4 \cos ^{2} y+8 \cos y+4 \\
& V=\pi \int_{a}^{b} x^{2} d y \\
&=4 \pi \int_{0}^{\pi}\left(\cos ^{2} y+2 \cos y+1\right) d y \\
&=4 \pi\left[\frac{1}{2} y+\frac{1}{4} \sin 2 y+2 \sin y+y\right]_{0}^{\pi} \\
&=4 \pi\left[\left(\frac{\pi}{2}+0+0+\pi\right)-0\right] \\
&=4+1
\end{aligned}
$$

Some students could not $\int\left(\cos ^{2} y\right) d y$.

$$
=6 \pi^{2} \text { cubic units. }
$$

- Examination: EXI I MATHS TRIAL HSC Level: EXTENSION I
Year: 2018

Level:
Year:
QUESTION: 13 _ \quad Markers Comments
a) $\sin \left(\cos ^{-1} \frac{2}{3}+\tan ^{-1}-\frac{3}{4}\right)$
let $\alpha=\cos ^{-1} \frac{2}{3}$ and $\beta=\tan ^{-1}\left(\frac{-3}{4}\right)$

so

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& =\frac{\sqrt{5}}{3} \times \frac{4}{5}+\frac{2}{3} \times\left(\frac{-3}{5}\right)- \\
& =\frac{4 \sqrt{5}}{15}-\frac{6}{15} \\
& =\frac{4 \sqrt{5}-6}{15}
\end{aligned}
$$

$$
\begin{aligned}
& =\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& =\frac{\sqrt{5}}{3} \times \frac{4}{5}+\frac{2}{3} \times\left(\frac{-3}{5}\right)-1 \text { mark for }
\end{aligned}
$$

b) $P(x)=a x^{3}+b x^{2}+c x+d$
i) but $a=1$ since monic

$$
\begin{aligned}
& P(0)=0+0+0+d \\
& d=-6 \quad x+b \\
& x^{2}+7 \sqrt{x^{3}+b x^{2}+c x-6} \\
& \frac{x^{3}+0 x^{2}+7 x}{0+b x^{2}+(c-7) x-6} \\
& \frac{b x^{2}+0 x+7 b}{0+(c-7) x-6-7 b} \\
& c-7=1 \quad-6-7 b=12 \\
& c=8 \quad-7 b=18 \\
& \quad b=\frac{-18}{7}
\end{aligned}
$$

Year:
iii)

$$
\begin{aligned}
& P(x)=x^{3}-\frac{18}{7} x^{2}+8 x-6 \\
& P^{\prime}(x)=3 x^{2}-\frac{36}{7} x+8
\end{aligned}
$$

$$
P(1)=\frac{3}{7}
$$

$$
P^{\prime}(1)=\frac{41}{7}
$$

$$
x_{2}=x_{1}-\frac{p(1)}{p^{\prime}(1)}
$$

$$
=1-\frac{3 / 7}{41 / 7}
$$

$$
=1-\frac{3}{41}
$$

$$
=\frac{38}{41}=0.92
$$

BC)

i)

$$
\tan (\alpha+\theta)=\frac{5}{x} \quad \tan (\theta)=\frac{3}{x}
$$

$$
\theta+\alpha-\theta=\tan ^{-1}\left(\frac{5}{x}\right)-\tan ^{-1} \frac{3}{x}
$$

ii)

$$
\begin{aligned}
\frac{d x}{d x} & =\frac{1}{1+\left(\frac{5}{x}\right)^{2}} x^{-5 x^{-2}}-\frac{1}{\left(1+\left(\frac{3}{x}\right)^{2}\right.} \times-3 x^{-2} \\
& =\frac{\frac{5}{x^{2}}}{1+\frac{25}{x^{2}}}+\frac{\frac{3}{x^{2}}}{1+9 / x^{2}} \\
& =-\frac{5 x^{2}}{\left(\frac{x^{2}+25}{x^{2}}\right)}+\frac{3 / x^{2}}{\left(\frac{x^{2}+9}{x^{2}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { QUESTION: }}{d x}=-\frac{5}{x^{2}+25}+\frac{3}{x^{2}+9} \\
& \frac{d \alpha}{d x}=0 \text { for max } \\
& \frac{5}{x^{2}+25}=\frac{3}{x^{2}+9} \\
& 5 x^{2}+45=3 x^{2}+75 \\
& 2 x^{2}=30 \\
& x^{2}=15 \\
& x= \pm \sqrt{15} \quad x>0, \therefore x=\sqrt{15} \\
& x|3.5| \sqrt{15} \\
& \begin{array}{c}
3-9
\end{array} \quad \therefore x=\sqrt{15} \text { is } \\
& \frac{d \alpha}{d x}|0.01| 0 \\
& \hline 0
\end{aligned}
$$

1 mark setting up $\frac{d \alpha}{d x}$
correctly.

1 mark for $x=\sqrt{15}$

1 mark for testing $x=\sqrt{15}$ is max.
ii) $\alpha=\tan ^{-1}\left(\frac{5}{x}\right)-\tan ^{-1}\left(\frac{3}{x}\right)$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{5}{\sqrt{15}}\right)-\tan ^{-1}\left(\frac{3}{\sqrt{15}}\right) \\
& =14^{\circ} .
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{\log _{2} 1 / x}{\log _{2} 1 / 2} \geqslant \log _{2}(4 x-1) \\
& \frac{\log _{2} x^{-1}}{\log _{2} 2^{-1}} \geqslant \log _{2}(4 x-1) \\
& \frac{\log _{2} x}{7} \geqslant \log _{2}(4 x-1) \\
& x \geqslant 4 x-1 \\
& 3 x \geqslant \frac{1}{3}
\end{aligned}
$$

But $x>\frac{1}{4}$ since $4 x-1>0$

$$
\therefore 1 / 4<x \leqslant 1 / 3 .
$$

1 mark change the base.

1 mark for $x \leqslant \frac{1}{3}$

1 mark for testing $x>\frac{1}{4}$

Examination: HSC - Trial Examination Level: Extension 1 Mathematics
Year: 2018
QUESTION:
_- \quad Markers Comments
a) $t=4 x^{2}-6 x+3$
(i) $\frac{d t}{d x}=8 x-6$

$$
v=\frac{d x}{d t}=\frac{1}{8 x-6}
$$

(ii)

$$
\begin{aligned}
a & =\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& =\frac{d}{d x}\left(\frac{1}{2}(8 x-6)^{-2}\right) \\
& =\frac{1}{2} \times-2(8 x-6)^{-3} \times 8 \\
& =\frac{-8}{(8 x-6)^{3}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& t=8 \mathrm{sec} \\
& 4 x^{2}-6 x+3=8 \\
& 4 x^{2}-6 x-5=0 \\
& x=\frac{6 \pm \sqrt{36+80}}{8} \\
& =\frac{6 \pm \sqrt{116}}{8} \\
& =\frac{3 \pm \sqrt{29}}{4}
\end{aligned}
$$

$x=\frac{3+\sqrt{29}}{4}$ as $a>0$ of the particle always mares to the students stating. right and velocity is reasons for choosing never zero

$$
\begin{aligned}
V & =\frac{1}{8\left(\frac{3+\sqrt{29}}{4}\right)-6}=\frac{1}{2 \sqrt{29}} \quad(0.093 \mathrm{~cm} / \mathrm{s}) \\
& =\frac{1}{6+2 \sqrt{29}-6}=100
\end{aligned}
$$

Examination: HSC - Trial Examination
Level: Extension 1 mathematics
Year: 2018
QUESTION:
b) (i)

$$
\begin{aligned}
T & =R+A e^{-k t} \\
\frac{d T}{d t} & =-k A e^{-k t} \\
& =-k(T-R)
\end{aligned}
$$

$\therefore T=R+A e^{-k t}$ is a solution to the differential equation.
(ii)

$$
\begin{aligned}
t & =0, \quad T=190^{\circ} \mathrm{C}, \quad t=5, T=85^{\circ} \\
190 & =25+A e^{\circ} \quad\left(e^{\circ}=1\right)
\end{aligned}
$$

Also $85=25+165 e^{-5 k}$

$$
A=165
$$

$$
\begin{aligned}
& \left.\left.85=25+165 e^{-5 k} \begin{array}{l}
\text { most } \\
\text { students found } \\
\frac{60^{2}}{465}=e^{-5 k}
\end{array}\right\} \begin{array}{l}
\text { A, } k \text { corecilly }
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
&-5 k=\ln \left(\frac{4}{11}\right) \\
& k=-\frac{1}{5} \ln \left(\frac{4}{11}\right) \\
& 63=25+165 e^{-k t} \\
& \frac{25}{}=165 e^{-k t} \\
& t=-\frac{1}{k} \ln \left|\frac{38}{165}\right| \\
&=7.25 . . \text { minutes } \\
&=7 \min (\text { to the nearest } \\
&\text { minute })
\end{aligned}
$$

Examination: HSC - Trial Examination's Level: Extension 1-1
year: 2018
QUESTION: 14 Markers Comments
c) $P($ odd $)=P, \quad P($ even $)=1-p$
at most one even = Probabillij of
(i) O even + prob of 1

$$
\begin{aligned}
& ={ }^{6} c_{6} p^{6}(1-p)^{0}+{ }^{6} c_{5}{ }^{\text {even }} p^{5}(1-p) \\
& =p^{6}+6 p^{5}-6 p^{6} \\
& =6 p^{5}-5 p^{6}
\end{aligned}
$$

(ii) Product of scores is even, when it is atleast one even.

$$
\begin{aligned}
& 1-{ }^{6} C_{6} p^{6}(1-p)^{0} \\
& =1-p^{6} .
\end{aligned}
$$

$$
\text { d) } 1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}
$$

Step 1: $n=1, \quad$ IHS $=1$ $n=1$.
Step 2: Let the result be true for $n=k$ this part

$$
\begin{aligned}
& \text { CHS }=\text { RHS , the result is true }=2-\frac{1}{1}=1
\end{aligned}
$$

$$
1+\frac{1}{2^{2}}+-+\frac{1}{k^{2}} \leq 2-\frac{1}{k}
$$

Step 3 To show that the result is true for $n=k+1$
i.e.

$$
\text { e. True for } 1+\frac{1}{2^{2}}+\cdots+\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}} \leq 2-\frac{1}{k+1}
$$

Examination:
Level: Extension 1-Malue ratios
Year: 2018

LBS

$$
1+\frac{1}{2^{2}}+\cdots+\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}} \leq 2-\frac{1}{k}+\frac{1}{(k+1)^{2}}
$$

In order to show that

$$
1+\frac{1}{2^{2}}+\cdots+\frac{1}{(k+1)^{2}} \leq 2-\frac{1}{k+1}
$$

enough to show that $2-\frac{1}{k}+\frac{1}{k+1)^{2}} \leq 2-\frac{1}{k+1}$

$$
\begin{aligned}
& i \cdot e \quad \frac{1}{k+1}-\frac{1}{k}+\frac{1}{(k+1)^{2}} \leq 0 \\
& \frac{k(k+1)-(k+1)^{2}+k}{(k+1)^{2}} \leq 0
\end{aligned}
$$

i.e. $\frac{k^{2}+k-k^{2}-2 k-1+k}{(k+1)^{2}} \leq 0$
i.e. $\frac{-1}{(k+1)^{2}} \leq 0$ which is true.
\therefore using the Principal of Mathematical' Induction, the property is the for all $n \geqslant 1$

