

Penrith Selective High School

2018

Higher School Certificate

Trial Examination

Mathematics Extension 1

General instructions		 Reading time – 5 minutes Working time – 2 hours Write using black or blue pen. NESA approved calculators may be used. A reference sheet is provided with this examination paper. In questions 11-14, show relevant mathematical reasoning and/or calculations. 						
		No correction tape to be used.						
Total marks:		Section I – 10 marks (pages 1 - 4)						
70		Attempt Questions 1-10						
		 Allow about 15 minutes for this section 						
				s (pages 5 - 8)			
		• Atte	empt Ques	stions 11-14				
		• Allo	ow about 1	hour and 45 n	ninutes for	this section		
	Preliminary	Polynomials	Binomial Theorem	Inverse Trigonometry	Calculus	Probability	Mathematical Induction	
MC Q1-	Q1,3 4,5			Q6, 7, 9	Q2,10	Q8		
10	/4			/3	/2	/1		
Question	a			f	b,c,d	e		
11 Question	/3 a,b		d	/3 C	/8	/1		
12	a,b /6		/3	/6				
Question	d	b		a, c				
13	/3	/5						
Question 14					a,b /8	с /4	d /3	/70
· · ·					,.	/-	/0	

Student Number:

Total

/19

/18

/6

/3

%

/3

/5

/16

Section I

10 marks **Attempt Questions 1-10** Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 The point P divides the interval from A(-7, 6) and B(4, -6) externally in the ratio 2:3.

What is the *x*-coordinate of *P* ?

- (A) –29
- (B) 15
- (C) 20
- (D) 22

2 What is the value of $\lim_{x \to 0} \frac{\sin 3x}{5x}$?

- (A) 0
- (B) $\frac{3}{5}$
- (C) 1
- 5 3 (D)
- 3 The Cartesian equation of the tangent, at t = -2, to the parabola x = t 4, $y = t^2 + 5$ is: (A) 4x - y + 15 = 0
 - (B) 4x + y 15 = 0
 - (C) 4x y 15 = 0
 - (D) 4x + y + 15 = 0

- 4 What are the asymptotes of $y = \frac{5x}{(x+7)(3x-1)}$?
 - (A) $y = 0, x = -7, x = \frac{1}{3}$ (B) $y = 0, x = 7, x = -\frac{1}{3}$ (C) $y = 5, x = -7, x = -\frac{1}{3}$ (D) $y = 5, x = -7, x = \frac{1}{3}$
- Two secants from an external point P cut off intervals on a circle as shown below. 5

What is the value of x ?

- (A) 1 2 (B) $\frac{1+\sqrt{69}}{2}$ (C) $\frac{3}{2}$ (D) 6
- 6 Which of the following is the derivative of $tan^{-1}(e^{-2x})$?

(A)
$$\frac{e^{2x}}{1+e^{2x}}$$

(B)
$$\frac{-e^{-2x}}{1+e^{-2x}}$$

$$\begin{array}{c} \text{(C)} \quad \frac{-2e^{-2x}}{1+e^{4x}} \end{array}$$

(D)
$$\frac{-2e^{-2x}}{1+e^{-4x}}$$

- 7 Let $|b| \le 1$. What is the general solution to $\cos \frac{x}{3} = b$?
 - (A) $k\pi \pm \cos^{-1} b$
 - (B) $2k\pi \pm 3 \cos^{-1} b$
 - (C) $4k\pi \pm cos^{-1} b$
 - (D) $6k\pi \pm 3 \cos^{-1} b$
- 8 Adrian, Bryson and six friends arrange themselves at random in a circle. What is the probability that Adrian and Bryson are *not* together?
 - (A) $\frac{1}{5040}$ (B) $\frac{5}{7}$ (C) $\frac{2}{7}$ (D) $\frac{5039}{5040}$
 - 9 The primitive function of $\frac{1}{x^2 6x + 12}$ is:
 - (A) $\ln(x^2 6x + 12) + C$
 - (B) $\frac{1}{3} \tan^{-1}\left(\frac{x-3}{3}\right) + C$
 - (C) $\frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{x-3}{\sqrt{3}}\right) + C$
 - (D) $\frac{1}{9} \tan^{-1}\left(\frac{x-3}{9}\right) + C$
- 10 Given that $\frac{g'(x)}{g(x)} = 2$, which of the following statements are true? (Note: *C* is a constant in each case)
 - (A) $g(x) = e^x + C$
 - (B) $g(x) = e^{2x} \times C$
 - (C) $g(x) = 2 \ln x + C$
 - (D) $g(x) = C \ln x$

End of Section I

Section II

60 marks Attempt Questions 11-14 Allow about 1 hour and 45 minutes for this section

Answer each question on a **SEPARATE** booklet.

In Questions 11-14, your responses should include relevant mathematical reasonings and/or calculations.

Question 11 (15 marks)

(a) Solve the inequality:
$$\frac{5x}{x-2} \le 4$$
 3

(b) Find
$$\int \cos^2 6x \, dx$$
 2

(c) Evaluate
$$\int_0^2 \frac{3x}{(3x+1)^2} dx$$
 by using the substitution $u = 3x + 1$. 3

- (d) A circular oil slick lies on the surface of a body of water. Its area is increasing at the rate of $16 m^2/min$. At what rate is the radius increasing at the time the radius is 5 metres to 2 decimal places ?
- (e) Colour blindness affects 8% of all men. What is the expression of the probability that any random sample of 14 males should contain exactly 6 males that are colour blind?
- (f) The shaded area shown in the diagram below is bounded by the x-axis, $y = sin^{-1}x$ and the line $x = \frac{1}{2}$.

End of Question 11

3

ABC is a triangle inscribed in a circle. PA is a tangent to the circle. PQ is drawn parallel (a) to AB and meets BC produced to Q. Copy the diagram into your booklet.

Prove APQC is a cyclic quadrilateral.

- $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $4ay = x^2$ such that the (b) tangents at P and Q intersect at an angle of 45° . Let T be the point of intersection. The tangent at *P* is $y = px - ap^2$. (DO NOT PROVE THIS).
 - i) Show that p q = 1 + pq2

2

2

4

3

ii) Find the locus of *T*.

(c) i) Sketch the curve
$$y = cos^{-1}\left(\frac{x-2}{2}\right)$$
 2

- ii) Show that when this curve is rotated about the y-axis, the volume of solid of revolution generated is $6\pi^2$ cubic units.
- (d) Show that

$$\binom{n}{0} + 2\binom{n}{1} + 3\binom{n}{2} + \dots \dots + (n+1)\binom{n}{n} = (n+2)2^{n-1}$$

End of Question 12

Question 13 (15 marks)

(a) Find the exact value of

$$\sin\left(\cos^{-1}\frac{2}{3}+\tan^{-1}\left(-\frac{3}{4}\right)\right)$$

1

1

(b) A monic cubic polynomial when divided by $x^2 + 7$ leaves a remainder of x + 12 and when divided by x leaves a remainder of -6.

i) Find the polynomial in the form
$$ax^3 + bx^2 + cx + d$$
. 3

- ii) The polynomial above has a root close to x = 1. Using one application of Newton's **2** Method, give a better approximation to 2 decimal places.
- (c) Siranjeeve buys a 2 metre tall LCD television screen for his cinema room. He mounts it on a vertical wall, placing it so that the base of the television is 3 metres above his horizontal eye line from where he sits in his favourite armchair. Let the distance from his eye to the wall be x metres and the angle from his eye to the top and base of the television be α (the viewing angle).

Let θ be the angle of elevation to the base of the television.

i) Show that the angle of vision α is given by $\alpha = tan^{-1}\left(\frac{5}{x}\right) - tan^{-1}\left(\frac{3}{x}\right)$ television
wiewing angle
television
2 metres

ii)	Show that for a maximum viewing angle α , $x = \sqrt{15}$ metres.	3
-----	--	---

iii) Hence, find the maximum viewing angle α , to the nearest degree.

(d) Solve for x:
$$\log_{\frac{1}{2}}\left(\frac{1}{x}\right) \ge \log_{2}(4x-1)$$
 3

End of Question 13

(a) A certain particle moves along the x-axis according to the equation $t = 4x^2 - 6x + 3$ where x is measured in centimetres and t in seconds. Initially the particle is 1.5 cm to the right of the origin 0 and moving away from 0.

i) Prove that the velocity,
$$v \ cms^{-1}$$
 is given by $v = \frac{1}{8x-6}$.

ii) Find an expression for the acceleration,
$$a \ cms^{-2}$$
, in terms of x 2

2

1

iii) Find the velocity of the particle when t = 8 seconds.

(b) i) Show that the function $T = R + Ae^{-kt}$ is a solution to the differential equation

$$\frac{dT}{dt} = -k(T-R)$$

ii) A metal cake tin is removed from an oven at a temperature of 190°C. If the cake 2 tin takes five minutes to cool to 85°C and the room temperature is 25°C, find the time (to the nearest minute) it takes for the cake tin to cool to 63°C.

(Assume that the cake tin cools at a rate proportional to the difference between the temperature of the cake tin and the temperature of the surrounding air.)

- (c) A die is biased so that in any single throw the probability of an odd number is p where p is a constant such that $0 , <math>p \neq 0.5$.
 - i) Show that in six throws of the die the probability of at most one even number is $26p^5 5p^6$.
 - ii) Find the probability that in six throws of the die the product of the scores is even. 2
- (d) Prove by Mathematical Induction

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}, \text{ for all integers } n \ge 1.$$

End of Question 14

End of Examination

Find the exact value of the volume of the solid of revolution formed when the region 3 bounded by the $y = 3 \sec \frac{x}{2}$, the x-axis and the lines x = 0 and $x = \pi$ is curve rotated about the x-axis.

Find the value of k such that $tan^{-1}(k) + tan^{-1}\left(\frac{3}{5}\right) = \frac{\pi}{4}$ 3

2

2

In the expansion of $\left(x^3 + \frac{1}{x}\right)^7$, does the expression contain a constant term? Justify your answer.

A particle is moving in a straight line. At time t seconds it has displacement *x* metres where from a fixed point *O* on the line, velocity $v ms^{-1}$ given by $v = cos^2 x$ and acceleration $a ms^{-2}$. The particle starts at *O*.

i)	Find expressions for <i>a</i> in terms of <i>x</i> for <i>x</i> in terms of <i>t</i>	2
ii)	Sketch the graph of x against t.	1

ii) Describe the motion of the particle from its initial position to its limiting 2 position.

i) Show that the function $T = R + Ae^{-kt}$ is a solution to the differential **1** equation

$$\frac{dT}{dt} = -k(T-R)$$

ii) A metal cake tin is removed from an oven at a temperature of 190°C. If the cake tin takes ten minutes to cool to 155°C and the room temperature is 25°C, find the time (to the nearest minute) it takes for the cake tin to cool to 90°C.

(Assume that the cake tin cools at a rate proportional to the difference between the temperature of the cake tin and the temperature of the surrounding air.)

Examination: TRIAL HSC. M.C. 1A 2B 3D 4A 5A Level: Extension One 6070 8B 9C 10B Year: 2018 1/2 QUESTION: 11 Markers Comments 10 5x 54 x+2 $5 \propto (x - 2) \leq 4(x - 2)^2$ $5x(x-2) - 4(x-2)^2 \le 0$ (x-2)[5x - 4(x-2)]≤0 * If students $(x-2)(x+8) \le 0$ wrote -85x52 they scored 1 12 -85x<2 D 2 marks. (b) $\int cos^2 6x dx = \frac{1}{2} \int (1 + cos 12x) dx$ = = (x+ =====)+c = 1x + 14 sin 12x + C when x=2, u=7(c) u= 3x+1 when x=0, ii=1 () 载=3 du=3dx $\int \frac{3x}{(3x+1)^2} dx = \frac{1}{3} \int \frac{u-1}{u^2} du$ = = = [(t_1 - t_2) du $=\frac{1}{3}\int (t_1-u^2)du$ $=\frac{1}{2}\left[1nu+u\right]$ (1) = = - [1,17+=]

Examination: Fial	
Level: Ext. 1	
Year: 2018 2/2	
QUESTION:	Markers Comments
$ \begin{array}{c} (d) A = \pi r^{2} \\ dA \\ dT = 2\pi r \end{array} \qquad (1) \qquad \begin{array}{c} dr \\ dT = dr \\ dT \end{array} \times \begin{array}{c} dA \\ dT \\ dT \end{array} $	
$= \frac{1}{2\pi r} \times 16$ $= \frac{16}{2\pi r}$	
when $r=5$, $dr = \frac{16}{1077}$ = $\frac{8}{577}$ (1)	*A lat at students forgot to And the ensuer connect
-' radius is increasing at 0.51m/min	Oto 2.dp.
(e) p = men who are clourblind = 0.08 q = men who aren't colourblind = 0.92	
$P(exactly 6 men) = {}^{14}C_6(0.08)^6(0.92)^8$ are colourblind) = ${}^{14}C_6(0.08)^6(0.92)^8$	
(f) Area = Jisin x dx = Area & _ Jisin x dx rectangle = Jisin x dx = Jixin - [-cos x]o	
$= \frac{1}{12} - \left(-\cos\frac{1}{6} - \cos\frac{1}{6}\right)$	
$= \frac{1}{2} - (-\frac{3}{2} + 1)$ $= \frac{1}{2} + \frac{5}{2} - 1$	•
$= \frac{\pi + 6J3 - 12}{12}$	
*(2-1) = 1 mark only * = + = =	2 marks only
$\#\left(1-\frac{\pi}{2}\right)=2$ marks only	

* ,

Examination:

Level:

Year:

QUESTION: 13	Markers Comments	
a) $\sin\left(105\frac{12}{3} + \tan^{-1}\frac{3}{4}\right)$		
let $\alpha = (06^{-1} \frac{2}{3} \text{ and } B = \tan^{-1}(\frac{-3}{4})$		
$\frac{3}{2}\sqrt{5}$ $\frac{4}{5}\sqrt{-3}$		
50 $\sin(\alpha + \beta) = \sin\alpha(\theta + 05\alpha)$ = $\frac{\sqrt{5}}{3} \times \frac{4}{5} + \frac{2}{3} \times \frac{3}{5}$	1 mark fo negative sign.	r
$= \frac{4\sqrt{5}}{15} - \frac{6}{15}$ $= \frac{4\sqrt{5} - 6}{15}$	1 mark for final answ	ler.
b) $P(x) = ax^3 + bx^2 + cx + d$ i) but $a = 1$ since monic P(0) = 0 + 0 + 0 + d d = -6	1 mark for a = 1 d = -6	Part b) was done poorly.
$\frac{x+b}{x^{2}+7} = \frac{x+bx^{2}+cx-6}{\frac{x^{3}+0x^{2}+7x}{0+bx^{2}+(c-7)x-6}}$	Amark for division of polynomi	
$\begin{array}{cccc} & & & & \\ \hline \\ \hline$	$4 \text{ mark for} \\ c = 8 \\ b = -\frac{18}{7}$	
$p(x) = x^3 - \frac{18}{7}x^2 + 8x - 6$	7	

,

* ,

Examination:

Level:

٠

۰.

Year:

	Markare Commonte
QUESTION: $\frac{1}{3}$ $\frac{3}{6}$ $\frac{1}{6}$ $\frac{3}{6}$ $\frac{1}{6}$	Markers Comments
$ D P(k) = k - \frac{10}{2}x^{-1} + 8x - 6$	
$b \text{ ii) } P(x) = x^3 - \frac{18}{7}x^2 + 8x - 6$ $P'(x) = 3x^2 - \frac{36}{7}x + 8$	
$P(1) = 3 \qquad 7$	
$P(1) = \frac{3}{7}$ $P'(1) = \frac{41}{7}$	Newton's
P'(1) = 41	method
7	
$\gamma = \gamma - P(1)$	carry from
$\chi_2 = \chi_1 - \frac{P(1)}{P'(1)}$	previous error-
$= 1 - \frac{3}{7}$ $\frac{41}{7}$	
41/7	
$= 1 - \frac{3}{41}$	
$= 2\sigma$	
$=\frac{38}{44}=0.92$	
13c) 2	
10 3	
χ	
i) $\tan(2+\theta) = \frac{5}{2}$ $\tan(\theta) = \frac{3}{2}$	1 mark.
	THURK
$\theta + 2 - \theta = tan^{-1}(\frac{5}{2}) - tan^{-1}\frac{3}{2}$	
(i) by $-5x^{-2}$ 1 $2x^{-2}$	
$\frac{du}{dx} = \frac{1}{1 + (\frac{5}{x})^2} \times \frac{-5x^{-2}}{-(1 + (\frac{3}{x})^2)^2} \times \frac{-3x^{-2}}{-(1 + (\frac{3}{x})^2)^2}$	
(1+(z))	
$= \frac{5}{3}$	
$-\frac{\chi^2}{1+25}$ + $\frac{\chi^2}{1+25}$	
1+ 12 + 1/x2	
= - 5/22 3/22	
$= \frac{5}{\pi^{2}} + \frac{3}{\pi^{2}} $	
(χ^2) (χ^2)	

Examination:

Level:

Year:

QUESTION:	Markers Comments
$\frac{da}{dx} = -\frac{5}{x^2 + 25} + \frac{3}{x^2 + 9}$ $\frac{da}{dx} = 0 \text{for max}$ $\frac{5}{x^2 + 25} = \frac{3}{x^2 + 9}$	$\frac{1}{2} \max_{\substack{\mu p \in \frac{d2}{dx} \\ correctly}}^{1}$
$5x^{2} + 45 = 3x^{2} + 75$ $2x^{2} = 30$ $x^{2} = 15$ $x = \pm \sqrt{15} x = \sqrt{15}$	4 mark for $x = \sqrt{15}$
$\frac{\chi 3.5}{0.010} = 0.00195 = \chi = \sqrt{16}^{-1} ig$	1 mark for testing $x = \sqrt{15}$ is max.
$ \vec{m} \propto = \tan^{-1} \left(\frac{5}{\kappa} \right) - \tan^{-1} \left(\frac{3}{\kappa} \right) $ $ = \tan^{-1} \left(\frac{5}{15} \right) - \tan^{-1} \left(\frac{3}{15} \right) $ $ = 14^{\circ}. $	1 mark for answer.
(1) $\frac{\log_2 \sqrt{x}}{\log_2 \sqrt{2}} = \log_2(4x-1)$ $\frac{\log_2 \sqrt{2}}{\log_2 \sqrt{2}} = \log_2(4x-1)$ $\frac{\log_2 \sqrt{2}}{\log_2 \sqrt{2}} = \log_2(4x-1)$	1 mark change the base.
$\frac{10g_2 \chi}{\chi} \gg \log_2 (4\chi - 1)$ $\frac{\chi}{\chi} \gg 4\chi - 1$ $3\chi \leq \frac{1}{3}$	$\frac{1}{x} \underset{x \leq J_3}{\text{1mark for}}$
But $X > \frac{1}{4}$ since $4X - 1 > 0$ $\therefore k_4 < x \le k_3$.	testing

۰.

Examination: HSC - Trial Examin	alión
Level: Extension 1 Mathematics	
Year: 2018	
QUESTION: 6	Aarkers Comments
a) $t = 4x^2 - 6x + 3$	
(i) $\frac{dF}{dx} = 8x - 6$	à
$U = \frac{dx}{dt} = \frac{1}{8x-6}$ (weil don	
	ost of the
$= \frac{d}{dx} \left(\frac{1}{2} \left(8x - 6 \right) \right) \qquad \qquad$	lid it well,
$= 1 \cdot 2 \cdot 8 \cdot 7 = 6 \cdot 8 \cdot 8$	ny ten wrote
$= -\frac{8}{(8x-6)^3}$	(ex-6) instead
(iii) $t = 8 \text{ sec.}$	of (8x-6) ⁻³
$4x^2 - 6x + 3 = 8$	- c c s -
$4x^2 - 6x - 5 = 0$	
$x = 6 \pm \sqrt{36 + 80}$	
$= 6 \pm \sqrt{116}$	- good pir
$= 3\pm \sqrt{29}$	good to see
x = 3 + 529 as a > of the particle + always mores to the right and velocity is Never zero $12 = 1$	stating
4 always mores to the)	tudents for chassing casons for chassing
right and velocity is m	ostive value of x.
12 = 1	505000
$8\left(\frac{3+\sqrt{2}q}{\epsilon_{+}}\right) - 6$	
$= \frac{1}{6+2\sqrt{2q-6}} = \frac{1}{2\sqrt{2q}} \begin{pmatrix} 0R \\ 0.093 \ cm/s \end{pmatrix}$)

.

Examination: HSC - Trial Examination Level: Extension 1 Mathematics 2018

Year:

QUESTION:
b) (i)
$$T = R + A e^{-kt}$$

 $dT = -kAe^{-kt}$
 $at = -k(T-R)$
 $at T = R + Ae^{-kt}$ is a solution to
the differential equation.
(ii) $t = 0$, $T = 190^{\circ}$ c, $t = 5$, $T = 85^{\circ}$
 $190 = 25 + Ae^{\circ}$ ($e^{\circ} = 1$)
 $A = 165^{\circ}$, Also, $85 = 25 + 165 e^{-5k}$
 $4, k$ correctly
 $\frac{6\sigma}{165} 4 = e^{-5k}$
 $\frac{6\sigma}{165} - \frac{5k}{11}$
 $\frac{6\sigma}{165} - \frac{5k}{11}$
 $63 = 25 + 165 e^{-kt}$
 $\frac{63}{10} = e^{-kt}$
 $\frac{165}{11} = e^{-kt}$
 $\frac{165}{11} = e^{-kt}$
 $\frac{165}{11} = -\frac{1}{k} \ln \left| \frac{38}{115} \right|$
 $= 7.25 \dots$ minutes
 $= 7min(to the nearest minute)$

۰. , .

.

.

•

Examination: Extension 1- Mathematics Level: 2018 Year: Markers Comments QUESTION: 14 Most of th LHSO Jestude 1/5 $1 + \frac{1}{2^2} + - + \frac{1}{k^2} + \frac{1}{(k+1)^2} \leq 2 - \frac{1}{k} + \frac{1}{(k+1)^2}$ (using the assumption) In order to show that Fin proving $\frac{1+1}{2^2+\cdots+1} \leq 2-1$ (k+1)2 $\leq 2-1$ the inequality enough to show that 2-1+1 <2-1 k+1 Jstep 3 ie, <u>k+1-k+</u><u>k+1)250</u> $k(\underline{K+1}) - (\underline{k+1})^2 + \underline{k} \leq 0$ $(\underline{k+1})^2$ i.e. k+K-K-2K-1+K < 0 (E+1)2 i.e. -1 (k+1)2 50 which is true. ". Using the Principal of Mathematical Induction, The property is true for all N7, 1