Section 1: Multiple Choice (10 marks) Indicate your answers on the answer sheet provided.

Q1. Given the complex number z has $Arg z = \frac{\pi}{4}$, which of the following is a correct representation of $i\overline{z}$?

Q2. Which expression is equal to $\int_0^a [f(a - x) + f(a + x)]dx$?

- A $\int_0^a f(x) dx$
- B $\int_0^{2a} f(x) dx$
- C $2\int_0^a f(x)dx$
- D $\int_{-a}^{a} f(x) dx$

Q3. The diagram below shows the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ where a > b > 0. The points $(a \sec \theta, b \tan \theta)$ and $Q(a \sec \alpha, b \tan \alpha)$ lie on the hyperbola and the chord PQ subtends a right angle at the origin.

Use the parametric representation of the hyperbola to determine which of the following expressions is correct?

- A $\sin\theta\sin\alpha = -\frac{a^2}{b^2}$
- B $\sin\theta\sin\alpha = \frac{a^2}{b^2}$

C
$$\tan \theta \tan \alpha = -\frac{a^2}{b^2}$$

D
$$\tan \theta \tan \alpha = \frac{a^2}{b^2}$$

Q4. The polynomial equation $x^3 + 3x^2 - 2x + 6 = 0$ has roots α , β and γ .

Which of the following polynomials has roots $\alpha - 1, \beta - 1, \gamma - 1$?

A $x^{3}-5x+10=0$ B $x^{3}+3x^{2}-2x+14=0$ C $x^{3}+6x^{2}+x+8=0$ D $x^{3}+6x^{2}+7x+8=0$

Q5. Which of the following graphs best represents the implicit function $\frac{x}{y} + \frac{y}{x} = 2?$

Q6. Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{1}{\cos\theta + 2\sin\theta + 3} d\theta$$
 using the substitution $t = tan \frac{\theta}{2}$

- B 0.785
- C 1.107
- D 1.570

Q7. The point P(z) moves on the complex plane according to the condition |z-i|+|z+i|=4. The Cartesian equation of the locus of *P* is:

A
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$

B $\frac{x^2}{3} + \frac{y^2}{4} = 1$
C $x^2 + y^2 = 1$
D $x^2 + y^2 = 4$

Q8. The region bounded by $y \le 4x^2 - x^4$ and $0 \le x \le 2$ is rotated about the y axis to form a solid. What is the volume of this solid using the method of cylindrical shells?

A
$$\frac{16\pi}{3}$$
 units³
B $\frac{8\pi}{3}$ units³
C $\frac{20\pi}{3}$ units³
D $\frac{32\pi}{3}$ units³

Q9. What is the area of the largest rectangle that can be inscribed in the ellipse $4x^2 + 9y^2 = 36$?

А	24√2
В	$6\sqrt{2}$
С	24
D	12

Q10. Consider the equation
$$\left(\frac{2+i}{c}\right)^p = 1$$
 where *c* is a real and $p \neq 0$

For how many values of c will this equation have real solutions?

- A None
- B One
- C Two
- D Four

End of Multiple Choice

Section II (90 marks)

Attempt Questions 11–16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11	Use a SEPARATE writing booklet.	(15 marks)
-------------	---------------------------------	------------

(a) Find $\int tan^4 x sec^2 x dx$

(b) Use the substitution
$$u = x - 2$$
 to evaluate
$$\int_{\frac{3}{2}}^{\frac{5}{2}} \frac{1}{\sqrt{(x-1)(3-x)}} dx$$
 (3)

(1)

(c) (i) Write
$$\frac{3x+2}{x^2+5x+6}$$
 as a sum of partial fractions. (2)

(ii) Hence evaluate
$$\int_0^2 \frac{3x+2}{x^2+5x+6} dx$$
 (2)

(d) Given that the point $P(6\cos\theta, 2\sin\theta)$ lies on an ellipse, determine the following:

- (ii) Coordinates of the foci. (1)
- (iii) Equations to the directrices. (1)
- (iv) Sketch neatly this ellipse showing all important features. (1)

(e) For the hyperbola
$$\frac{x^2}{16} - \frac{y^2}{25} = 1$$

- (i) Find the eccentricity. (1)
- (ii) Find the equations of the asymptotes. (1)
- (iii) If P is on the hyperbola and S and S' are its foci, then given PS=2, find PS'. (1)

Use a SEPARATE writing booklet. (15 marks)

- (a) Realise the denominator of $\frac{7-2i}{3+i}$ (1)
- (b) (i) On the same diagram, sketch the locus of both |z 2| = 2 and |z| = |z 4i|. (2)
 - (ii) What is the complex number represented by the point of intersection of these two loci? (1)
- (c) Let z be a complex number of modulus 3 and ω be a complex number of modulus 1.

Show that
$$|z - \omega|^2 = 10 - (\overline{z\omega} + \overline{z}\omega)$$
 (2)

(d) Given the polynomial $2x^3 + 3x^2 - x + 1 = 0$ has roots α , β and γ :

Question 12

- (i) Find the polynomial whose roots are α^2 , β^2 and γ^2 . (2)
- (ii) Determine the value of $\alpha^3 + \beta^3 + \gamma^3$. (2)
- (e) The graph of y = f(x) is shown. The line y = -x is an oblique asymptote to the curve.

Use separate one-third page graphs, to sketch:

(i)
$$f(-x)$$

(ii) $f(|x|)$
(iii) $\frac{x}{f(x)}$
(1)
(1)
(3)
Question 13
Use a SEPARATE writing booklet. (15 marks)

(15 marks)

- (a) Given that 1 + i is a zero of P(x) = 0 where $P(x) = x^4 x^3 2x^2 + 6x 4$, factorise P(x) fully over the field of the complex numbers. (2)
- (b) The ellipse $\frac{(x-4)^2}{9} + \frac{y^2}{4} = 1$ is rotated about the y axis to form a solid of revolution.
 - (i) By taking slices perpendicular to the axis of rotation, show that the volume of a slice is $8\pi\sqrt{36-9y^2} \,\delta y$ (2)
 - (ii) Find the exact volume of the solid. (2)
- (c) Find all the roots of the equation $18x^3 + 3x^2 28x + 12 = 0$, given that two of the roots are equal. (3)
- (d) P and Q are two points on the same branch of the rectangular hyperbola xy = 25. Given that P is $(5p, \frac{5}{p})$ and Q is $(5q, \frac{5}{q})$:
 - (i) Show that PQ has the equation x + pqy = 5(p+q) where P and Q are parameters *p* and *q* respectively. (2)
 - (ii) If PQ has a constant length of m^2 , show that

$$25[(p+q)^2 - 4pq] (p^2q^2 + 1) = m^4p^2q^2$$
⁽²⁾

(iii) Show that the locus of R, the midpoint of PQ, in Cartesian form is $xym^4 = 4(xy - 25)(x^2 + y^2).$ (2)

(a) The diagram shows an ellipse with equation $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and the larger of its auxiliary circles. The coordinates of a point P on the ellipse are $(4\cos\theta, 3\sin\theta)$ where $\theta \neq 0$ or π .

A straight line *l* parallel to the *y* axis intersects the *x* axis at N and the ellipse and the auxiliary circle at the points P and Q respectively.

- (i) Find the equations of the tangent to the ellipse at P and to the auxiliary circle at Q. (4)
- (ii) The tangents at P and Q intersect at point R. Show that R lies on the *x* axis. (2)
- (iii) Prove that $ON \times OR$ is independent of the positions of P and Q. (1)
- (b) By expanding $(\cos \theta + i\sin \theta)^3$ it can be shown that $\cot 3\theta = \frac{t^3 3t}{3t^2 1}$ where $t = \cot \theta$. (Do **NOT** prove this.)
 - (i) Solve $\cot 3\theta = -1$ for $0 \le \theta \le 2\pi$ (2)
 - (ii) Hence show that $\cot \frac{\pi}{12} \cdot \cot \frac{5\pi}{12} \cdot \cot \frac{9\pi}{12} = -1$ (2)
 - (iii) Write down a cubic equation with roots $tan \frac{\pi}{12}$, $tan \frac{5\pi}{12}$ and $tan \frac{9\pi}{12}$ (1) (Express your answer as a polynomial equation with positive integer coefficients).
- (c) (i) Show that the derivative of the function $y = x^x$ for x > 0 is $(\ln x + 1) x^x$. (1)
 - (ii) Hence or otherwise neatly draw $y = x^x$ for x > 0 (2)

(2)

(2)

(a) A triangle ABC is right-angled at A and it has sides of lengths *a*, *b* and *c* units. A circle of radius *r* units is drawn so that the sides of the triangle are tangents to the inscribed circle.

Prove that
$$r = \frac{1}{2}(c + b - a)$$
. (3)

(b) (i) A solid has as its base the region bounded by the curves y = x and $x = 2y - \frac{y^2}{2}$. Cross sections parallel to the x axis are equilateral triangles with a side in the base.

Show that the volume is given by
$$V = \frac{\sqrt{3}}{4} \int_0^2 (y^2 + \frac{y^4}{4} - y^3) dy$$
 (3)

(ii) Calculate the volume of this solid.

(c) (i) If
$$I_n = \int_0^1 (1-x^2)^{\frac{n}{2}} dx$$
 where n is a positive integer, show that

$$I_n = \frac{n}{(n+1)} I_{n-2} .$$
(3)

(ii) Hence evaluate I₅.

(d) Find the exact range of values for *m*, where *m* is a non-negative real number, such that $x^2 + (2 - m^2)y^2 = 1$ represents an ellipse in the Cartesian Plane. (2)

PTO for Q16

(15 marks)

(a) (i) Show that
$$a^2 + b^2 \ge 2ab$$
 where a and b are distinct positive real numbers. (1)

(ii) Hence show that
$$a^2 + b^2 + c^2 \ge ab + ac + bc$$
. (1)

(iii) Hence show that
$$\sin^2 \alpha + \cos^2 \alpha \ge \sin 2\alpha$$
. (1)

- (iv) Hence show that $\sin^2 \alpha + \cos^2 \alpha + \tan^2 \alpha \ge \sin \alpha \cos \alpha + \sec \alpha + \frac{1}{2} \sin 2\alpha$. (1)
- (b) An orchestra has 2n cellists; n being female and n male. From the 2n cellists a committee of three members is formed which contains more females than males. Two members of the orchestra cellists are Paul and Matilda. Find the probability that a committee chosen at random has Matilda in it if it is known that Paul has been chosen. (1)
- (c) When a polynomial P(x) is divided by $x^2 a^2$, where $a \neq 0$, the remainder is px + q.

(i) Show that
$$p = \frac{1}{2a} [P(a) - P(-a)]$$
 and $q = \frac{1}{2} [P(a) + P(-a)]$ (2)

- (ii) Find the remainder when $P(x) = x^n a^n$ is divided by $x^2 a^2$ and *n* is a positive integer. (2)
- (d) For $n = 1, 2, 3, \dots$ let $S_n = 1 + \sum_{1}^{n} \frac{1}{r!}$.
 - (i) Prove by Mathematical Induction that $e S_n = e \int_0^1 \frac{x^n}{n!} e^{-x} dx$ (3)
 - (ii) Deduce that $0 < e S_n < \frac{3}{(n+1)!}$ for $n = 1, 2, 3, \dots$ (1)
 - (iii) Prove that $(e S_n)n!$ is not an integer for $n = 2, 3, 4, \dots$ (1)
 - (iv) Show that there cannot exist positive integers p and q such that $e = \frac{p}{q}$. (1)

END OF EXAM

Multiple choice.

, days

L A

02. B 3.A

4. D 5.B

6. A 7. B 9. P 10.C

conjugate of z followed by 90° anticlockwise rotation

$$2c^{2} - y^{2} = 1$$
 $e^{2} = 137$ $e = 573$
 $(3) x^{2} + y^{2} = 2xy$ $(x - y)^{2} = 0$ $y = x$ $x \neq 0, y \neq 0$
 $y = x - 1$ $-x = y + 1$ $(y + 1)^{3} + 3(y + 1)^{2} - 2(y + 1) + 6=$

$$\int_{a}^{b} 8V = \pi (R^{2} - r^{2}) 8x = \pi [1 - s_{1}r^{2}x]dx$$

$$= \frac{2r^{2}}{q} + \frac{y^{2}}{q} = 1 \quad Area = (2x)(2y) = fxy$$

$$= \frac{1}{c} |z + i| = J5$$

$$= 1c| = |z + i| = J5$$

$$= ince \ C \in R \quad c = \pm J5$$

$$\frac{\partial vestion ||}{(\alpha) \int tan^{4} x \operatorname{Sec}(x) dx} = \frac{1}{5} \tan^{5} x + C \qquad (1)$$

$$(b) \quad u = x - 2 \qquad \text{when } x = \frac{3}{2}, \quad u = -\frac{1}{2}$$

$$(1 + u = 2 - 1) \qquad x = 5\frac{1}{2}, \quad u = \frac{1}{2}$$

$$(1 - u = 3 - x) \qquad (1 - u) = \frac{1}{\sqrt{(x - 1)(3 - x)}} dx = \sum \int_{-\frac{1}{2}}^{1} \frac{1}{\sqrt{(1 + u)(1 - u)}} du \qquad (1)$$

$$= \int_{-\frac{1}{2}}^{1} \frac{1}{\sqrt{(1 - u)^{2}}} du$$

$$(\bigcirc)(\bigcirc) \frac{3x+2}{(2c+3)(x+2)} = \frac{A}{x+3} + \frac{B}{5c+2}$$

$$3x+2 = A(x+2) + B(2c+3)$$

when $x = -2$; $-4 = B$
when $x = -3$; $-7 = A$; $A = 7$ \bigcirc

.

$$\frac{47}{x+3} - \frac{4}{x+2}$$
(1)

$$\int_{0}^{2} \frac{3x+2}{(x+3)(x+2)} dx = \int_{0}^{2} (\frac{7}{x+3}) - \frac{4}{x+2} dx$$

$$= \left[\frac{7}{10} \ln (x+3) - 4 \ln (x+2) \right]_{0}^{2}$$
(1)

$$= \frac{7}{105} - 4 \ln 4 - 7 \ln 3 + 4 \ln 2$$

$$= 7 \ln (5^{2} - 3) - 4 \ln (2)$$
(1)

$$\int_{0}^{0} e^{-1} \ln (\frac{7 e^{1} x^{5}}{34 q q 2})$$
(2)

$$\int_{0}^{1} e^{-1} \ln (\frac{7 e^{1} x^{5}}{34 q q 2})$$
(3)

$$\int_{0}^{2} e^{-1} \ln (\frac{7 e^{1} x^{5}}{36} + \frac{x^{5}}{4} = 1)$$

$$\int_{0}^{2} e^{-2} (1 - e^{2})$$

$$e^{-1} \sqrt{1 - \frac{4}{36}} = \sqrt{\frac{32}{36}}$$

(ii) Focies (tae, o)

$$= (\pm 4JZ \circ) \qquad (1)$$
(iii) Directoixes is $x = \pm \frac{4}{2} = \pm \frac{6}{2}x^{3} = \pm \frac{9JZ}{2}$
(1)

$$(b) \frac{7-2i}{3+i} \times \frac{3-i}{2-1} = \frac{21-6i-7i-2}{9+i} = \frac{19-13i}{10}$$

$$(b) \frac{12}{10}$$

$$(c) \frac{12}{3+i} \times \frac{3-i}{2-1} = \frac{21-6i-7i-2}{9+i} = \frac{19-13i}{10}$$

$$(c) \frac{10}{10} = \frac{10}{10}$$

$$(c) \frac{10}{10}$$

•

$$\frac{(414C)}{(415.5)} = \frac{(415)}{(2-41)^2} = \frac{(415)$$

$$\begin{array}{l} \text{method } 3 \\ \text{iet} & 2 = 3 \text{ cise} \\ \text{iet} & 2 = 3 \text{ cise} \\ \text{LHS} = \left| 2 - w \right|^2 = \left(3 \cos \theta - \cos x \right)^2 + \left(3 \sin \theta + 9 \sin \theta \right)^2 \\ &= 9 \cos^2 \theta + \cos^2 \theta - 6 \sin \theta \cos \theta + 9 \sin^2 \theta + 5 \sin^2 \theta - 6 \sin^2 \theta + 1 - 6 \left(\cos \theta \cos \theta + 4 \sin \theta \sin \theta \right) \\ &= 10 - 6 \left(\cos \theta \cos \theta + 5 \sin \theta \sin \theta \right) \\ &= 10 - 6 \left(\cos \theta \cos \theta + 5 \sin \theta \sin \theta \right) \\ &= 10 - \left[3 \cos \theta \cos \theta + 3 \sin^2 \theta \right] \left(\cos \theta - 1 \sin^2 \theta \right) + \left(3 \cos \theta \sin \theta + 3 \sin^2 \theta \sin \theta \right) \\ &= 10 - \left[3 \cos \theta \cos \theta - 1 \sin^2 \theta \sin \theta + 3 \sin^2 \theta \cos \theta + 3 \sin^2 \theta \sin \theta \right] \\ &= 10 - \left[3 \cos \theta \cos \theta + 3 \cos^2 \theta \sin \theta + 3 \sin^2 \theta \cos \theta + 3 \sin^2 \theta \sin \theta \right] \\ &= 10 - \left[3 \cos \theta \cos \theta + 3 \cos^2 \theta \sin \theta + 3 \sin^2 \theta \cos \theta + 3 \sin^2 \theta \sin \theta \right] \\ &= 10 - \left(6 \cos \theta \cos \theta + 3 \sin^2 \theta \sin \theta + 3 \sin^2 \theta \sin \theta \right) \\ &= 10 - \left(6 \cos \theta \cos \theta + 4 \cos^2 \theta \sin \theta + 3 \sin^2 \theta \sin \theta \right) \\ &= 10 - \left(6 \cos \theta \cos \theta + 4 \cos^2 \theta \sin \theta + 3 \sin^2 \theta \sin \theta \right) \\ &= 10 - \left(6 \cos \theta \cos \theta + 4 \cos^2 \theta \sin \theta + 3 \sin^2 \theta \sin^2 \theta + 3 \sin^2 \theta +$$

(ii) $P(d) = \frac{1}{2}d^{3} + 3d^{2} - d + 1 = 0$ $P(\beta) = \frac{1}{2}2\beta^{3} + 3\beta^{2} - \beta + 1 = 0$ $2\gamma^{3} + 3\gamma^{2} - \gamma + 1 = 0$ $2(\lambda^{3} + \beta^{3} + \chi^{3}) = -3(\lambda^{2} + \beta^{2} + \chi^{2}) + (\lambda + \beta + \chi) - 3$ $\lambda^{2} + \beta^{2} + \gamma^{2} = -b_{q} = \frac{13}{4}$ part ()) (from $\mathcal{L} + \beta + \mathcal{E} = -3/2$ $2(\lambda^{3} + \beta^{3} + \lambda^{3}) = -3 \times \frac{13}{4} + \frac{-3}{2}$ 3 ~`. $2(\lambda^{3} + \beta^{3} + \lambda^{3}) = -14^{1/4}$ $\lambda^{3} + \beta^{3} + \gamma^{3} = -57$ (@) (\hat{i}) [2] 550 (27) (n)(-21) (2,1)

 $SV = (\pi R_2^2 - \pi S_1^2) S_{\gamma}$ R $x = 4 \pm \sqrt{1 - \frac{y^2}{4}}$ $R_2 + R_1 = 8$ $R_2 - R_1 = 6 \sqrt{1 - \frac{y^2}{4}}$ $T = T (R_2 - R_1) S = T (R_2 - R_1) (R_2 + R_1) S = T (R_2 - R_1) (R_2 + R_1) S = S$ t = TT × 6 JI - 3 × 8 Sy = TT 48 JA- y2 Sy 1 8 TT J36 - 9 y2 V = 84 >0 21 8TT J36-942 84 (1) = 8TT J J36-9y2 dy = 24TT JJ4-y2 dy $= 24 \Pi \times \frac{1}{2} \left(\pi \times 2^2 \right)$ (as J7-y2 is a Semi-circle $= 4.8 \pi^2 \text{ units}^3$ $182^{2} + 32^{2} - 28x + 12 = 0$ 9 $let P(x) = 18x^{2} + 3x^{2} - 28x + 12$ $P'(x) = 56x^{2} + 6x - 28$ $= 2(28x^{2}+3x-14)$ =2(9x+7)(3x-2)P'(x) = 0 when $x = -\frac{7}{9}$ or $\frac{2}{3}$ $P(-7/4) = 18(-74)^{3} + 3(-74)^{2} + 28(-74) + 12 \neq 0$

$$P(\frac{24}{3}) = 18(\frac{24}{3})^{\frac{3}{2}} + 3x^{\frac{4}{2}} - \frac{56}{3} + 12$$

$$= \frac{16}{3} + \frac{12}{3} - \frac{56}{3} + 12$$

$$= 0$$

$$\therefore (3x - 2) \text{ is a double coat} (1)$$

$$i = P(x) = (3x - 2)^{2}(ax + \beta)$$

$$= (9x^{2} - 12x + \beta)(ax + \beta)$$

$$b_{3} \text{ in spectrum } a = 2, \beta = 3$$

$$\therefore P(x) = (3x - 2)^{2}(2x + 3)$$

$$\therefore roods \text{ are } 243, \frac{14}{3}, -\frac{34}{2} (1)$$

$$P(x) = (3x - 2)^{2}(2x + 3)$$

$$\therefore roods \text{ are } 243, \frac{14}{3}, -\frac{34}{2} (1)$$

$$P(x) = (3x - 2)^{2}(2x + 3)$$

$$\therefore roods \text{ are } 243, \frac{14}{3}, -\frac{34}{2} (1)$$

$$P(x) = (3x - 2)^{2}(2x + 3)$$

$$\therefore roods \text{ are } 243, \frac{14}{3}, -\frac{34}{2} (1)$$

$$P(x) = (3x - 2)^{2}(2x + 3)$$

$$\therefore roods \text{ are } 243, \frac{14}{3}, -\frac{34}{2} (1)$$

$$P(x) = (3x - 2)^{2}(2x + 3)$$

$$\therefore roods \text{ are } 243, \frac{14}{3}, -\frac{34}{2} (1)$$

$$P(x) = (3x - 2)^{2}(2x + 3)$$

$$\therefore roods \text{ are } 243, \frac{14}{3}, -\frac{34}{2} (1)$$

$$P(x) = (3x - 2)^{2}(2x + 3)$$

$$\therefore roods \text{ are } 243, \frac{14}{3}, -\frac{34}{2} (1)$$

$$P(x) = (3x - 2)^{2}(2x + 3)$$

$$= \frac{5(4 - 5)^{2}}{5(4 - 6)} = \frac{-1}{69} (1)$$

$$P(x) = \sqrt{2} P(x) = 5(2x + 5)$$

$$P(x) = 5(2x + 5)$$

$$(1) \text{ length } A P(x) = 5(2x + 5)$$

$$(1) \text{ length } A P(x) = 5(2x + 5)$$

$$x^{2} = \sqrt{2^{2}(x - 4)^{2} + 5^{2}(2x - 1)^{2}}$$

A)

 $M^{*} = 5^{2} (p - q)^{2} + 5^{2} (p - q)^{2}$ $M^{4} = 5^{2} (p-q_{1})^{2} + 5^{2} (-p+q_{2})^{2}$ $P^{2}q^{2}$ $m^{4} = 5^{2} (p-q)^{2} + \frac{5^{2}}{p^{2}q^{2}} (p-q)^{2} (-1)^{2}$ $m^4 = 25(p-q)^2 \left[1 + \frac{1}{p^2 q^2}\right]$ 30 $p^{2}q^{2}m^{4} = 25(p-q)^{2}(p^{2}q^{2}+1)$ $p^{2}q^{2}m^{4} = 25(p^{2}+q^{2}-2pq)(p^{2}q^{2}+i)$ $p^{2}q^{2}m^{4} = 25 \left[(p+q)^{2} - 4pq \right] (p^{2}q^{2} + 1)$ (iii) Midpoint of PQ is 3 $M = \left(\frac{5p+5q}{2}, \frac{5p+5q}{2}\right)$ $\mathcal{L}_{R} = \left(\frac{5(p+q)}{2}, \frac{5(p+q)}{2pq}\right)$ (R = M) $i^{\circ} X = \frac{5}{2} (p+q) \quad Y = \frac{5}{2} (p+q) \frac{1}{pq}$ $-\frac{1}{5} p + q = \frac{2x}{5} - -0 \qquad y = \frac{x}{pq}$ sub () and (2) into (ii)'s result. $\frac{x^2}{y^2}m^{\frac{1}{2}} = 75\left[\frac{4x^2}{5^2} - 4x\right]\left(\frac{x^2}{y^2} + 1\right)$ $x^{2} = M^{2} = (4x^{2} - 4x^{2}z^{2})(2^{4}z^{2} + 1)$ (now nultiply both $y^{2} = M^{2} = (4x^{2} - 4x^{2}z^{2})(2^{4}z^{2} + 1)$ (now nultiply both Sides bay y^{3}). $x^{2}ym^{4} = (4xy - 4xz)(x^{2} + y^{2})$ $x^{2}ym^{4} = 4(xy - 25)(x^{2} + y^{2})$

(a) (b) $P((4\cos\theta, 3\sin\theta))$ $\frac{dx}{d\theta} = -4\sin\theta$ $\frac{dy}{d\theta} = 3\cos\theta$ $\frac{dy}{d\theta} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$ $= \frac{3\cos\theta}{-4\sin\theta}$ (b) eqn of tangent at $P(15\%) = \frac{-3\cos\theta}{4\sin\theta} (x - 4\cos\theta)$ $y - 35_{11}\theta = -\frac{3\cos\theta}{4\sin\theta} + \frac{3\cos^2\theta}{5\pi\theta}$

 $\frac{3\cos\theta x}{4\sin\theta} + y = \frac{3\cos^2\theta}{5\sin\theta} + 3\sin\theta$ $\frac{3\cos\theta x}{4\sin\theta} + y = \frac{3\cos^2\theta}{5\sin\theta} + 3\sin\theta$

$$\frac{3\cos 0 3}{4\sin 0} + 4 = \frac{3}{5\pi 0}$$

$$\frac{\cos 0 3}{4} + \frac{4}{3} = \frac{1}{3} = 1 - \frac{1}{2}$$

At Q_{3}^{*} $(4\cos\theta, 4\sin\theta)$ $\frac{d_{3}}{d_{3}} = \frac{d_{3}}{d_{0}} \times \frac{d_{0}}{d_{3}}$ $= \frac{4\cos\theta}{-4\sin\theta} = \frac{\cos\theta}{-\sin\theta}$ (1)

 $\left(\right)$

eqn. If tangent at $cl is 2 - 4-sin 0 = -\frac{cos\theta}{sint} (x-4cos\theta)$ $y + \frac{2ccos\theta}{sin\theta} = \frac{4cos\theta}{sin\theta} + \frac{4sin^{2}\theta}{sin\theta}$ $y + \frac{2ccos\theta}{sin\theta} = \frac{4}{sin\theta}$ $y + \frac{2ccos\theta}{sin\theta} = \frac{4}{sin\theta}$ $(1) = \frac{sin\theta}{4}y + \frac{xcos\theta}{4} = 1 - - -(2)$

Sub. back

$$i y = \frac{3}{5in\theta} - \frac{3\cos\theta}{45in\theta}, \frac{4}{\cos\theta}$$

$$y = \frac{3}{5in\theta} - \frac{3}{5in\theta}$$

$$y = 0$$

$$y = 0$$

$$K(\frac{4}{\cos\theta}, 0)$$
(1)
$$5 = K \text{ lies on the x-axis.}$$

in ON. OR
$$=$$

N (4600, 0)
N

(b) (i) cat 30=-1 : tange = -1 30=317, 17, 157, 197, 237 $\Theta = \prod_{q} \prod_{i=1}^{T} \prod_{i=1$ (1) Cot 30 = -1 and $Cot 30 = \frac{t^3 - 3t}{3t^2 - 1}$ (11) $-1 = \frac{t^3 - 3t}{3t^2 - 1}$ $1 - 3t^2 = t^3 - 3t$ but t = coto (data) (a) (a) ... solves for t are plant the file cot T/4, cot FIT , cot HIT product of the roots is: cot 74. cot 77. cot 172 = -d/4 = 1 cot 14, cot 12, cot 12 = 1 - ... () deduct z_{TT} from each of the argues in (field fr.) $= - \cot 4 \times - \cot 5T \times - \cot 4T = 1$ - 1 × cot 1/4 × cot 5/1 × cot 9/1 = 1 \therefore cot $\frac{\pi}{4}$, cot $\frac{\pi}{2}$, cot $\frac{\pi}{2} = -1$ -1 $\operatorname{cot}(\overline{T}), \operatorname{cot}(\overline{ST}) \operatorname{cot}(\underline{9T})$

(i) eqn with roots
$$\tan \frac{\pi}{12} + \tan \frac{\pi}{22} + \tan \frac{\pi}{12} + \tan \frac{\pi}{12}$$

 $i = \frac{1}{4}$
 $i = \frac{1$

$$BO = C - \Gamma$$

BP = BF (tangents drawn from external point) ." BF = c - r: (as BP = c - r) (D)

NOW
$$A = r$$

 $F = b - r$ (as $C = Ec$)
 $C = BF + FC$ (sum of adjacent lengths)
 $a = c - r + b - r$
 $a = c + b - 2r$
 $a = c + b - 2r$
 $a = c + b - 2r$
 $a = c + b - 2r$

 $= \frac{53}{4} \left[\frac{1}{3} y^{3} + \frac{y^{5}}{20} - \frac{1}{4} y^{4} \right]_{0}^{2}$ 1 (1). $=\frac{53}{4}\left[\frac{1}{3}x8+\frac{32}{20}-\frac{16}{4}-0\right]$ $= \frac{53}{4} \left[\frac{160}{60} + \frac{96}{60} - \frac{240}{60} \right] = \frac{53}{4} \times \frac{16}{60}$ $= \frac{53}{18} \text{ units}^3$ $I_{0} = \int (1-x^{2})^{n/2} dx$ (\underline{C}) (\underline{U}) . $= \left[x \left(1 - x^2 \right)^{N_2} \right]_{0}^{1} + n \int x^2 \left(1 - x^2 \right)^{N_2 - 1} dx \qquad (1)$ $= 0 = n \int (1 - x^2 + i) (1 - x^2)^{x-1} dx$ $= -n \int (1 - x^{2})^{\frac{1}{2}} dx + \int (-x^{2})^{\frac{1}{2}-1} dx = 0$ $\left(\alpha S \quad \frac{n}{2} - l = \frac{n-2}{2}\right)$ (1) $= -nI_n + nI_{n-2}$ $J_{n} + nJ_{n} = nJ_{n-2}$ $J_{n} (1+n) = nJ_{n-2}$ $J_{n} = \frac{n}{n+1} J_{n-2}$

. .

1 ag

.

···=

(c) (ii) Evaluate Is

فيتبقص والعالي المناف فيستنف المتعاد الربسي

$$\begin{array}{c} \therefore 2\left(a^{2}+b^{2}+c^{2}\right) \geqslant 2\left(ab+ac+bc\right) \qquad (1) \\ a^{2}+b^{2}+c^{2} \geqslant ab+ac+bc \qquad (1) \\ a^{2}+b^{2}+c^{2} \geqslant ab+ac+bc \qquad (1) \\ c_{11}+c_{12}c_{12}d \geqslant 2s_{11}d_{1}c_{12}d \qquad (1) \\ c_{11}+c_{12}c_{12}d \geqslant 2s_{11}d_{1}c_{12}d \qquad (1) \\ c_{11}+c_{12}c_{12}d \geqslant 2s_{11}d_{1}c_{12}d \qquad (1) \\ c_{11}+b^{2}+c^{2} \geqslant ab+ac+bc \qquad from (1) \\ let a=s_{11}d , b=c_{12}d , c=t_{12}d \qquad s_{11}d \\ c_{11}e_{11}d \qquad (1) \\ a=s_{11}d + c_{12}d + t_{12}d \geqslant s_{11}c_{12}d + s_{11}d + t_{12}d \\ c_{12}d \qquad (1) \\ a=\frac{1}{2}s_{11}d + s_{11}d + \frac{s_{11}d}{c_{12}d} + \frac{s_{11}d}{c_{12}d} \\ c_{12}d \qquad (1) \\ a=\frac{1}{2}s_{11}d + s_{11}d + \frac{1-c_{12}d}{c_{12}d} \\ c_{12}d \qquad (1) \\ a=\frac{1}{2}s_{11}d + s_{12}d + \frac{s_{11}d}{c_{12}d} + \frac{1-c_{12}d}{c_{12}d} \\ c_{12}d \qquad (1) \\ a=\frac{1}{2}s_{11}d + \frac{1-c_{12}d}{c_{12}d} \\ c_{12}d \qquad (1) \\ a=\frac{1}{2}s_{11}d + \frac{1-c_{12}d}{c_{12}d} + \frac{1-c_{12}d}{c_{12}d} \\ c_{12}d \qquad (1) \\ a=\frac{1}{2}s_{11}d + \frac{1-c_{12}d}{c_{12}d} + \frac{1-c_{12}d}{c_{12}d} \\ c_{12}d \qquad (1) \\ a=\frac{1}{2}s_{11}d + \frac{1-c_{12}d}{c_{12}d} + \frac{1-c_{12}d}{c_{12}d} + \frac{1-c_{12}d}{c_{12}d} \\ c_{12}d \qquad (1) \\ a=\frac{1}{2}s_{11}d + \frac{1-c_{12}d}{c_{12}d} + \frac{1-$$

]

 $(c)(i) \quad p(x) = (x^2 - a^2)(Q(x) + px + q)$ = (x - a)(x + a)Q(x) + px + q-P(a) = pa + q - - - 0 P(-a) = -ap + q - - a. . . . (D - Q) P(a) - P(-a) = pa + q + ap - q = 2ap \bigcirc $P = \frac{1}{2a} \left[P(a) - P(-a) \right]$ $\begin{array}{c} (D + (2)) \\ P(a) + P(-a) = pa + q - ap + q \\ = 2q \end{array}$ Ô $-i q = \frac{1}{2} \left[P(a) + P(-a) \right]$ ii) Given $P(x) = x^2 - a^2$ if n is even; $P(a) = a^2 - a^2 = 0$ $P(-a) = (-a)^2 - a^2 = 0$ from (i) remainder is pft + q (p=0, q=0 -ine remainder / $(\mathbf{\hat{l}})$ if n is odd; $f(a) = a^{2} - a^{2} = 0$ $p(-a) = (-a)^{2} - a^{2} = -a^{2} - a^{2} = -2a^{2}$ $p = \frac{1}{2a} \left[0 - (-2a^{2}) \right] = a^{2-1}$ $i = \frac{1}{2a} \left[0 - (-2a^{2}) \right] = -a^{2}$ $q = \frac{1}{2} \left[0 + (-2a^{n}) \right] = -a^{n} \qquad (1)$ 80 R(30)= an-1 x - an

 $RHS = e \int \frac{x^{K+1}}{(K+1)!} e^{-x} dse$ $u = x^{K+1} V = -e^{-x}$ $dv = (k+1) \times dv = e^{-\chi}$ $= \frac{e}{(K+1)!} \left[-x e^{-x} \right]_{0}^{1} - \frac{e}{(K+1)!} \int \frac{e}{(K+1)!} \left[\frac{e}{(K+1)!} \right]_{0}^{1} \frac{e}{(K+1)!} \frac{e^{-x}}{e^{-x}} dx$ $= \underset{(K+D)}{\overset{e}{\text{KT}}} \times \overset{e}{\overset{e}{\text{KT}}} + \underset{(K+D)}{\overset{e}{\text{KT}}} (x \overset{e}{\overset{e}{\text{KT}}}) x \overset{e}{\overset{e}{\text{KT}}} + \underset{(K+D)}{\overset{e}{\text{KT}}} x \overset{e}{\overset{E}{\text{KT}}} + \underset{(K+D)}{\overset{e}{\text{KT}}} x \overset{e}{\overset{K}} + \underset{(K+D)}{\overset{e}{\text{KT}}} x \overset{e}{\overset{K}} + \underset{(K+D)}{\overset{E}{\overset{K}}} x \overset{e}{\overset{K}} + \underset{(K+D)}{\overset{E}{\overset{K}} x \overset{e}{\overset{K}} + \underset{(K+D)}{\overset{E}{\overset{K}} x \overset{e}{\overset{K}} + \overset{E}{\overset{K}} x \overset{e}{\overset{K}} x \overset{e}{\overset{K}} + \overset{E}{\overset{K}} x \overset{e}{\overset{K}} x \overset{E}{\overset{K}} + \overset{E}{\overset{K}} x \overset{E}{\overset{K} x \overset{E}{\overset{K}} x \overset{E}{\overset{K}} x \overset{E}{\overset{K}} x \overset{E}{\overset{K} x \overset{E}{\overset{K}} x \overset{E}{\overset{K}} x \overset{E}{\overset{K}} x$ $=\frac{-1}{(K+1)!}+e^{\frac{1}{2}}\frac{x^{K}}{K!}e^{-x}dx$ = LHS. Fours By the Principle of Mathematical Induction, the result is the for all integers; n7,1. step (i) Deduce of e-s, < 3 (n+D) now est zerdac >0 as e>0 and e>1 and x 70 for x >0 $e < 3^{\circ} e \int \frac{x^{\circ}}{n!} e^{-\dot{x}} dx < 3 \int \frac{x^{\circ}}{n!} e^{-\dot{x}} dx$ $\leq 3\int_{n!}^{\infty}dx$ as $e^{-\chi}\leq 1$ $= 3 \left[\frac{x^{n+1}}{N!(n+4)} \right]_{0} \quad \text{for } 0 < x < 1$ $=\frac{3}{(n+1)!}-0$ 20 0 × e - 5 × 3 (0+D)

(iii) Prove that
$$(e-S_n)a!$$
 iso't an integer
now $e-S_n < \frac{3}{n!(n+1)}$, from (i)
 $(e-S_n)n! < \frac{3}{n+1}$
 $\frac{3}{n+1} \leq 1$ for $n=2,3,4$
 $o'o (e-S_n)n! < 1$ (i)
 $o'o (e-S_n)n! < 1$ (i)
 $o'o (e-S_n)n! < n$ (i) $n=2,3,4$
 $nez,3,4$
(iv) Assume $e=lip$
now $(e-S_n)n! = [e - (1+\frac{2}{n}+\frac{1}{n})n!]$
 $= (\frac{1}{2} - 1 - \frac{2}{n} + \frac{1}{n})n!$
 $= (\frac{1}{2} - 1 - \frac{2}{n} + \frac{1}{n})n!$
 $now (e-S_n)n! = [e - (1+\frac{2}{n} + \frac{1}{n})n!]$
 $= (\frac{1}{2} - 1 - (\frac{2}{n} + \frac{1}{n})n!]$ is dissible lage $\frac{1}{2}$
For $n > r$, then $n! \times \frac{2}{n} + must be an integer$
 $\therefore \frac{n!}{2} - n! - (\frac{2}{n} + \frac{1}{n})n!]$ is an bateger (j)
but this contradits (i) where $(e-S_n)n!$ is n t
an integer, $i: e \neq \frac{1}{2}$ so e is n to rational.