Section 1: Multiple Choice (10 marks)

Indicate your answers on the answer sheet provided.

Q1. Given the complex number z has $\operatorname{Arg} z=\frac{\pi}{4}$, which of the following is a correct representation of $i \bar{z}$?
A

B

C

D

Q2. Which expression is equal to $\int_{0}^{a}[f(a-x)+f(a+x)] d x$?

A $\quad \int_{0}^{a} f(x) d x$

B $\quad \int_{0}^{2 a} f(x) d x$

C $\quad 2 \int_{0}^{a} f(x) d x$

D $\quad \int_{-a}^{a} f(x) d x$

Q3. The diagram below shows the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ where $a>b>0$. The points $(a \sec \theta, b \tan \theta)$ and $Q(a \sec \alpha, b \tan \alpha)$ lie on the hyperbola and the chord $P Q$ subtends a right angle at the origin.

Use the parametric representation of the hyperbola to determine which of the following expressions is correct?
A $\sin \theta \sin \alpha=-\frac{a^{2}}{b^{2}}$
B $\sin \theta \sin \alpha=\frac{a^{2}}{b^{2}}$
C $\tan \theta \tan \alpha=-\frac{a^{2}}{b^{2}}$
D $\tan \theta \tan \alpha=\frac{a^{2}}{b^{2}}$

Q4. The polynomial equation $x^{3}+3 x^{2}-2 x+6=0$ has roots α, β and γ.
Which of the following polynomials has roots $\alpha-1, \beta-1, \gamma-1$?

A

$$
x^{3}-5 x+10=0
$$

B

$$
x^{3}+3 x^{2}-2 x+14=0
$$

C

$$
x^{3}+6 x^{2}+x+8=0
$$

D

$$
x^{3}+6 x^{2}+7 x+8=0
$$

Q5. Which of the following graphs best represents the implicit function $\frac{x}{y}+\frac{y}{x}=2$?
A

B

C

D

Q6. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{\cos \theta+2 \sin \theta+3} d \theta$ using the substitution $t=\tan \frac{\theta}{2}$

A 0.322
B 0.785
C $\quad 1.107$
D $\quad 1.570$

Q7. The point $P(z)$ moves on the complex plane according to the condition $|z-i|+|z+i|=4$. The Cartesian equation of the locus of P is:

A $\quad \frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
B $\quad \frac{x^{2}}{3}+\frac{y^{2}}{4}=1$
C $\quad x^{2}+y^{2}=1$
D $\quad x^{2}+y^{2}=4$

Q8. The region bounded by $y \leq 4 x^{2}-x^{4}$ and $0 \leq x \leq 2$ is rotated about the y axis to form a solid. What is the volume of this solid using the method of cylindrical shells?

A $\frac{16 \pi}{3}$ units 3
B $\frac{8 \pi}{3}$ units 3
C $\frac{20 \pi}{3}$ units 3
D $\frac{32 \pi}{3}$ units 3

Q9. What is the area of the largest rectangle that can be inscribed in the ellipse $4 x^{2}+9 y^{2}=36 ?$

A $24 \sqrt{2}$
B $\quad 6 \sqrt{2}$
C 24
D $\quad 12$

Q10. Consider the equation $\left(\frac{2+i}{c}\right)^{p}=1$ where c is a real and $p \neq 0$

For how many values of c will this equation have real solutions?

A None
B One
C Two
D Four

End of Multiple Choice

Section II (90 marks)

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11
Use a SEPARATE writing booklet.
(15 marks)
(a) Find $\int \tan ^{4} x \sec ^{2} x d x$
(b) Use the substitution $u=x-2$ to evaluate $\int_{\frac{3}{2}}^{\frac{5}{2}} \frac{1}{\sqrt{(x-1)(3-x)}} d x$
(c) (i) Write $\frac{3 x+2}{x^{2}+5 x+6}$ as a sum of partial fractions.
(ii) Hence evaluate $\int_{0}^{2} \frac{3 x+2}{x^{2}+5 x+6} d x$
(d) Given that the point $\mathrm{P}(6 \cos \theta, 2 \sin \theta)$ lies on an ellipse, determine the following:
(i) The eccentricity.
(ii) Coordinates of the foci.
(iii) Equations to the directrices.
(iv) Sketch neatly this ellipse showing all important features.
(e) For the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$
(i) Find the eccentricity.
(ii) Find the equations of the asymptotes.
(iii) If P is on the hyperbola and S and S' are its foci, then given PS=2, find PS'.
(a) Realise the denominator of $\frac{7-2 \mathbf{i}}{3+\mathbf{i}}$
(b) (i) On the same diagram, sketch the locus of both $|z-2|=2$ and $|z|=|z-4 i|$.
(ii) What is the complex number represented by the point of intersection of these two loci?
(c) Let z be a complex number of modulus 3 and ω be a complex number of modulus 1 .

Show that $|z-\omega|^{2}=10-(\bar{z} \omega+\bar{z} \omega)$
(d) Given the polynomial $2 x^{3}+3 x^{2}-x+1=0$ has roots α, β and γ :
(i) Find the polynomial whose roots are α^{2}, β^{2} and γ^{2}.
(ii) Determine the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(e) The graph of $y=f(x)$ is shown. The line $y=-x$ is an oblique asymptote to the curve.

Use separate one-third page graphs, to sketch:
(i) $f(-x)$
(ii) $f(|x|)$
(iii) $\frac{x}{f(x)}$

Question 13
(a) Given that $1+i$ is a zero of $\mathrm{P}(x)=0$ where $P(x)=x^{4}-x^{3}-2 x^{2}+6 x-4$, factorise $P(x)$ fully over the field of the complex numbers.
(b) The ellipse $\frac{(x-4)^{2}}{9}+\frac{y^{2}}{4}=1$ is rotated about the y axis to form a solid of revolution.
(i) By taking slices perpendicular to the axis of rotation, show that the volume of a slice is $8 \pi \sqrt{36-9 y^{2}} \delta y$
(ii) Find the exact volume of the solid.
(c) Find all the roots of the equation $18 x^{3}+3 x^{2}-28 x+12=0$, given that two of the roots are equal.
(d) P and Q are two points on the same branch of the rectangular hyperbola $x y=25$. Given that P is $\left(5 p, \frac{5}{p}\right)$ and Q is $\left(5 q, \frac{5}{q}\right)$:
(i) Show that PQ has the equation $x+p q y=5(p+q)$ where P and Q are parameters p and q respectively.
(ii) If PQ has a constant length of m^{2}, show that

$$
\begin{equation*}
25\left[(p+q)^{2}-4 p q\right]\left(p^{2} q^{2}+1\right)=m^{4} p^{2} q^{2} \tag{2}
\end{equation*}
$$

(iii) Show that the locus of R, the midpoint of PQ , in Cartesian form is

$$
\begin{equation*}
x y m^{4}=4(x y-25)\left(x^{2}+y^{2}\right) . \tag{2}
\end{equation*}
$$

(a) The diagram shows an ellipse with equation $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and the larger of its auxiliary circles. The coordinates of a point P on the ellipse are $(4 \cos \theta, 3 \sin \theta)$ where $\theta \neq 0$ or π.

A straight line l parallel to the y axis intersects the x axis at N and the ellipse and the auxiliary circle at the points P and Q respectively.
(i) Find the equations of the tangent to the ellipse at P and to the auxiliary circle at Q .
(ii) The tangents at P and Q intersect at point R . Show that R lies on the x axis.
(iii) Prove that $\mathrm{ON} \times \mathrm{OR}$ is independent of the positions of P and Q .
(b) By expanding $(\cos \theta+i \sin \theta)^{3}$ it can be shown that $\cot 3 \theta=\frac{t^{3}-3 t}{3 t^{2}-1}$ where $t=\cot \theta$. (Do NOT prove this.)
(i) Solve $\cot 3 \theta=-1$ for $0 \leq \theta \leq 2 \pi$
(ii) Hence show that $\cot \frac{\pi}{12} \cdot \cot \frac{5 \pi}{12} \cdot \cot \frac{9 \pi}{12}=-1$
(iii) Write down a cubic equation with roots $\tan \frac{\pi}{12}, \tan \frac{5 \pi}{12}$ and $\tan \frac{9 \pi}{12}$ (Express your answer as a polynomial equation with positive integer coefficients).
(c) (i) Show that the derivative of the function $y=x^{x}$ for $x>0$ is $(\ln x+1) x^{x}$.
(ii) Hence or otherwise neatly draw $y=x^{x}$ for $x>0$
(a) A triangle ABC is right-angled at A and it has sides of lengths a, b and c units. A circle of radius r units is drawn so that the sides of the triangle are tangents to the inscribed circle.

Prove that $r=\frac{1}{2}(c+b-a)$.
(b) (i) A solid has as its base the region bounded by the curves $y=x$ and $x=2 y-\frac{y^{2}}{2}$. Cross sections parallel to the x axis are equilateral triangles with a side in the base.

Show that the volume is given by $V=\frac{\sqrt{3}}{4} \int_{0}^{2}\left(y^{2}+\frac{y^{4}}{4}-y^{3}\right) d y$
(ii) Calculate the volume of this solid.
(c) (i) If $I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{\frac{n}{2}} d x$ where n is a positive integer, show that

$$
\begin{equation*}
I_{n}=\frac{n}{(n+1)} I_{n-2} . \tag{3}
\end{equation*}
$$

(ii) Hence evaluate I_{5}.
(d) Find the exact range of values for m, where m is a non-negative real number, such that $x^{2}+\left(2-m^{2}\right) y^{2}=1$ represents an ellipse in the Cartesian Plane.

PTO for Q16

(a) (i) Show that $a^{2}+b^{2} \geq 2 a b$ where a and b are distinct positive real numbers.
(ii) Hence show that $a^{2}+b^{2}+c^{2} \geq a b+a c+b c$.
(iii) Hence show that $\sin ^{2} \alpha+\cos ^{2} \alpha \geq \sin 2 \alpha$.
(iv) Hence show that $\sin ^{2} \alpha+\cos ^{2} \alpha+\tan ^{2} \alpha \geq \sin \alpha-\cos \alpha+\sec \alpha+\frac{1}{2} \sin 2 \alpha$.
(b) An orchestra has $2 n$ cellists; n being female and n male. From the $2 n$ cellists a committee of three members is formed which contains more females than males. Two members of the orchestra cellists are Paul and Matilda. Find the probability that a committee chosen at random has Matilda in it if it is known that Paul has been chosen.
(c) When a polynomial $\mathrm{P}(x)$ is divided by $x^{2}-a^{2}$, where $a \neq 0$, the remainder is $p x+q$.
(i) Show that $p=\frac{1}{2 a}[P(a)-P(-a)]$ and $q=\frac{1}{2}[P(a)+P(-a)]$
(ii) Find the remainder when $P(x)=x^{n}-a^{n}$ is divided by $x^{2}-a^{2}$ and n is a positive integer.
(d) For $n=1,2,3, \ldots \ldots$ let $S_{n}=1+\sum_{1}^{n} \frac{1}{r!}$:
(i) Prove by Mathematical Induction that $e-S_{n}=e \int_{0}^{1} \frac{x^{n}}{n!} e^{-x} d x$
(ii) Deduce that $0<e-S_{n}<\frac{3}{(n+1)!}$ for $n=1,2,3, \ldots \ldots \ldots$
(iii) Prove that $\left(e-S_{n}\right) n$! is not an integer for $n=2,3,4, \ldots \ldots \ldots$
(iv) Show that there cannot exist positive integers p and q such that $e=\frac{p}{q}$.

Multiple choice.

1. A
.2 .8
3.A
2. D
S.B
3. A
$7 . B$
$8 . P$
9.1
$10<$
conjugate of 2 followed by 90° anticlocknise sotation
$\frac{x^{2}}{4}-\frac{y^{2}}{4}=1$
(5) $\dot{x}^{2}+y^{2}=2 x y$
$y=x-1 \quad \therefore x=y+1 \quad(y+1)^{3}+3(y+1)^{2}-2(y+1)+6=$
(

$$
\begin{aligned}
e \text { (i) } \frac{3 x+2}{(x+3)(x+2)} & \equiv \frac{A}{x+3}+\frac{B}{x+2} \\
3 x+2 & =A(x+2) \pm B(x+3)
\end{aligned}
$$

when $x=-2 ; \quad-4=B$
when $x=-3$,

$$
\begin{equation*}
\therefore \quad \frac{+7}{x+3}-\frac{4}{x+2} \tag{1}
\end{equation*}
$$

(ii)

$$
\begin{align*}
\int_{0}^{2} \frac{3 x+2}{(x+3)(x+2)} d x & =\int_{0}^{2}\left(\frac{7}{x+3}-\frac{4}{x+2}\right) d x \\
& =[7 \ln (x+3)-4 \ln (x+2)]_{0}^{2} \tag{1}\\
& =7 \ln 5-4 \ln 4-7 \ln 3+4 \ln 2 \\
& =7 \ln (5 / 3)-4 \ln (2) \\
o_{1 /} & =\ln \left(\frac{78125}{34992}\right)
\end{align*}
$$

d) (i) $P(6 \cos \theta, 2 \sin \theta)$

$$
\begin{align*}
& \therefore \frac{x^{2}}{36}+\frac{y^{2}}{4}=1 \\
& b^{2}=a^{2}\left(1-e^{2}\right) \\
& e=\sqrt{1-\frac{4}{36}}=\sqrt{\frac{32}{36}} \\
& \therefore e=\frac{2 \sqrt{2}}{3} \tag{1}
\end{align*}
$$

(ii)

$$
\begin{align*}
\text { Foci: } & (\pm a e, 0) \\
& =(\pm 4 \sqrt{2}, 0) \tag{1}
\end{align*}
$$

(iii) Directries is $x= \pm \frac{9}{e}= \pm \frac{6}{2 \sqrt{2}} \times^{3}= \pm \frac{9 \sqrt{2}}{2}$
(iv)

(e) (i)

$$
\begin{align*}
& \frac{x^{2}}{16}-\frac{y^{2}}{25}=1 \\
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& 25=16\left(e^{2}-1\right) \\
& e^{2}=1+\frac{25}{16} \\
& e= \pm \frac{\sqrt{41}}{4} \quad b u t \quad e>0 \text { for hyperbola } \\
& \therefore e=\frac{\sqrt{41}}{4} \text { only } \tag{1}
\end{align*}
$$

(ii) $y= \pm \frac{b}{a} x \quad \therefore y= \pm \pm \frac{5}{4} x$
(iii)

$$
\begin{aligned}
& \left|p s-p S^{\prime}\right|=2 a \\
& \left|2-p s^{\prime}\right|=8 \\
& p S^{\prime}=10 \text { or }-6 \quad(a s a=4) \\
& \therefore P S^{\prime}=10 \text { only } \quad \text { but } p S^{\prime}>0 \text { (distance) }
\end{aligned}
$$

(a) $\frac{7-2 i}{3+i} \times \frac{3-i}{3-1}=\frac{21-6 i-7 i-2}{9+1}=\frac{19-13 i}{10}$ (1)

Question 12
(b) (i)

(1) line
(1) circle.
(ii) line and circle intersect at $2+2 i$ (1)
(s) as

$$
\begin{align*}
z \dot{z}=|z|^{2} \therefore(z-\omega)^{2} & =(z-\omega) \overline{(z-\omega)} \\
& =(z-\omega)(\bar{z}-\bar{\omega}) \tag{1}\\
& =z \bar{z}-z \bar{\omega}-\bar{z} \omega+\omega \overline{0} \\
& =9-(z \bar{\omega}+\omega \bar{z})+1 \tag{1}\\
& =10-(z \bar{\omega}+\omega \bar{z}) \\
& =\text { RHS. }
\end{align*}
$$

(d) (i) $f(x)=2 x^{3}+3 x^{2}-x+1$
roots are $\alpha^{2}, \beta^{2}, \gamma^{2}$

$$
\begin{align*}
& y^{2}=\alpha^{2} \quad y^{2}=x \quad \text { where } \quad x=\alpha^{2}, \beta^{2}, \gamma^{2} \\
& \therefore y=\sqrt{x} \\
& \therefore\left[Q(x)=2(\sqrt{x})^{3}+3(\sqrt{x})^{2}-\sqrt{x}+1=0\right. \\
& 2(\sqrt{x})^{3}-\sqrt{x}=-3 x-1 \tag{1}\\
& \sqrt{x}(2 x-1)=-3 x+1) \\
& x^{3}\left(4 x^{2}-4 x+1\right)=(3 x+1)^{2} \\
& 4 x^{3}-4 x^{2}+x=9 x^{2}+6 x+1 \\
& \therefore 4 x^{3}-13 x^{2}-5 x-1=0 \\
& \therefore Q(x)=4 x^{3}-13 x^{2}-5 x-1 \tag{1}
\end{align*}
$$

$$
\begin{array}{r}
\sqrt{a^{2}+b^{2}}=3 \\
a^{2}+b^{2}=9
\end{array}
$$

$$
L M S=W(Z-\omega)^{2}=\sqrt[m]{2}(i-c)^{2}+
$$

$$
\begin{aligned}
&(b-d)^{2}=a^{2}+c^{2}-2 a c \\
&=9+1-2 \\
&)+(a-b i)(c+d i)
\end{aligned}
$$

$$
R H S=10-\sqrt{(a+b i)(c-d i)+(a-b i)(c+d i)}=9+1-2(a c+b d)(1
$$

$$
=10-[a c+b d+b b i-a d i+a c+b d-c b i+a d 1]
$$

$$
=10-[2 a c+2 b d]
$$

$$
=10-2(a c+b d)
$$

method 3

$$
3 \cos \theta+3 i \sin \theta \quad \cos \alpha+i \sin \alpha
$$

let $2=3 \operatorname{cis} \theta \quad \omega=1 \operatorname{cis} \alpha$

Method 4

$$
\begin{aligned}
& L H S=|z-\omega|^{2}=(3 \cos \theta-\cos \alpha)^{2}+(3 \sin \theta, \sin \alpha)^{2} \\
& =9 \cos ^{2} \theta+\cos ^{2} \alpha-6 \sin \theta \cos \alpha+9 \sin ^{2}+\sin ^{2} \alpha-6 \sin \alpha^{5 n} \\
& =9+1-6(\cos \theta \cos \alpha+\sin \theta \sin \alpha) \\
& =10-6(\cos \theta \cos \alpha+5 \sin \theta \sin \alpha) \\
& \text { RHS }=10-[(3 \cos \theta+3 \cdot \sin \theta)(\cos \alpha-i \sin \theta)+(3 \cos \theta-3 \sin \theta)(\cos \alpha \\
& =10-[3 \cos \theta \cos \alpha-i 3 \cos \theta \sin \alpha+3 i \sin \theta \cos \alpha+3 \sin \theta \sin \alpha \\
& +3 \cos \theta \cos \alpha+3 i \cos \theta \sin \alpha-3 i \sin \theta \cos \alpha+3 \sin \theta \sin \alpha]
\end{aligned}
$$

(ii)

$$
\begin{align*}
& {\left[P(\alpha)=72 \alpha^{3}+3 \alpha^{2}-\alpha+1=0\right.} \\
& {\left[p(\beta)=\left[\begin{array}{l}
2 \beta^{3}+3 \beta^{2}-\beta+1=0 \\
2 \gamma^{3}+3 \gamma^{2}-\gamma+1=0 \\
2\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)=-3\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+(\alpha \\
\alpha^{2}+\beta^{2}+\gamma^{2}=-b / a=\frac{13}{4} \quad \text { (from parti)). } \\
\alpha+\beta+\gamma=-3 / 2
\end{array}\right.\right.} \\
& \therefore 2\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)=-3 \times \frac{13}{4}+\frac{-3}{2}-3 \\
& 2\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)=-14^{1 / 4} \\
& \alpha^{3}+\beta^{3}+\gamma^{3}=-\frac{57}{8}
\end{align*}
$$

(i)

(ii)

(1)

(1) for both branders above the x-axis
(1) For both branches below x-axis
(1) for $y=-1$, and forming pts $(\pm 2,2)$ at $x=0$

Question 13
(a) $\quad f(x)=x^{4}-x^{3}-2 x^{2}+6 x-4$
as $(1+i)$ is a zero 50 is $(1-i)$
(all coefficients are rational
$\therefore(x-(1+i))(x-(1-i))$ is a factor ie $x^{2}-2 x+2$ is a factor

* now can either do a poly. division er use factor theorem.

$$
\begin{aligned}
P(-2) & =16+8-8-12-4 \\
& =0
\end{aligned}
$$

$\therefore(x+2)$ is a factor
$P(1)=1-1-2+6-4$

$$
=0
$$

$\therefore(x-1)$ is a factor

$$
\begin{align*}
\therefore P(x) & =(x+2)(x-1)\left(x^{2}-2 x+2\right) \\
& =(x+2)(x-1)(x-1-i)(x-1+i) \tag{1}
\end{align*}
$$

(b) (i)

-ii)

$$
\begin{align*}
V & =\lim _{y \rightarrow 0} \sum_{-2}^{2} 8 \pi \sqrt{36-9 y^{2}} \delta y \\
& =8 \pi \int_{-2}^{2} \sqrt{36-9 y^{2}} d y \\
& =24 \pi \int_{-2}^{2} \sqrt{4-y^{2}} d y \tag{1}\\
& =24 \pi \times \frac{1}{2}\left(\pi \times 2^{2}\right) \\
& =48 \pi^{2} \text { units }^{3} \tag{1}
\end{align*}
$$

(as $\sqrt{4-y^{2}}$ is a semi-circle).
c)

$$
\begin{align*}
& 18 x^{3}+3 x^{2}-28 x+12=0 \\
& f^{\prime}(x)=18 x^{3}+3 x^{2}-28 x+12 \\
& f^{\prime}(x)=56 x^{2}+6 x-28 \\
&=2\left(28 x^{2}+3 x-14\right) \\
&=2(9 x+7)(3 x-2) \tag{0}
\end{align*}
$$

$p^{\prime}(x)=0$ when $x=-7 / 9$ or $2 / 3$...

$$
P(-7 / 9)=18(-7 / 9)^{3}+3\left(-\frac{7}{9}\right)^{2}+28(7 / 9)+12 \neq 0
$$

$$
\begin{aligned}
P(2 / 3) & =18(2 / 3)^{3}+3 \times 4 / 9-\frac{56}{3}+12 \\
& =\frac{16}{3}+\frac{12}{9}-\frac{56}{3}+12 \\
& =0
\end{aligned}
$$

$\therefore(3 x-2)$ is a double root
ie $p(x)=(3 x-2)^{2}(a x+\beta)$

$$
=\left(9 x^{2}-12 x+4\right)(a x+\beta)
$$

by in spection $a=2, \beta=3$

$$
\begin{align*}
& \therefore p(x)=(3 x-2)^{2}(2 x+3) \\
& \therefore \text { coots are } 2 / 3,2 / 3,-3 / 2 \tag{1}
\end{align*}
$$

(d) (i) $P\left(5 p, \frac{5}{p}\right) \quad Q\left(5 q, \frac{5}{q}\right)$

$$
\begin{equation*}
m=\frac{5 / q-5 / p}{5 q-5 p}=\frac{5\left(\frac{p-q}{p q}\right)}{5(q-p)}=\frac{-1}{p q} \tag{1}
\end{equation*}
$$

eqn of $P Q$ is:

$$
\begin{aligned}
& y-5 / p=\frac{-1}{p q}(x-5 p) \\
& p q y-5 q=-x+5 p \\
& x+p q y=5 p+5 q \\
& x+p q y=5(p+q)
\end{aligned}
$$

(ii) length of p Ce is k^{2} (data)

$$
k^{2}=\sqrt{s^{2}(p-q)^{2}+s^{2}\left(\frac{1}{p}-\frac{1}{q}\right)^{2}}
$$

$$
\begin{align*}
& m^{4}=5^{2}(p-q)^{2}+5^{2}\left(\frac{1}{p}-\frac{1}{q}\right)^{2} \\
& m^{4}=5^{2}(p-q)^{2}+5^{2} \frac{(-p+q)^{2}}{p^{2} q} q^{2} \\
& m^{4}=5^{2}(p-q)^{2}+\frac{5^{2}}{p^{2} q^{2}}(p-q)^{2}(-1)^{2} \\
& m^{4}=25(p-q)^{2}\left[1+\frac{1}{\left.p^{2} q q^{2}\right]}\right. \\
& p^{2} q^{2} m^{4}=25(p-q)^{2}\left(p^{2} q^{2}+1\right) \tag{1}\\
& p^{2} q^{2} m^{4}=25\left(p^{2}+q^{2}-2 p q\right)\left(p^{2} q^{2}+1\right) \\
& p^{2} q^{2} m^{4}=25\left[(p+q)^{2}-4 p q\right]\left(p^{2} q^{2}+1\right)
\end{align*}
$$

(iii) Midpoint of $P Q$ is:

$$
\begin{aligned}
& M=\left(\frac{5 p+5 q}{2}, \frac{5 / p+5 / q}{2}\right) \\
& \therefore R=\left(\frac{5(p+q)}{2}, \frac{5(p+q)}{2 p q}\right) \\
& \therefore \quad X=\frac{5}{2}(p+q) \quad Y=\frac{5}{2}(p+q) \frac{1}{p q} \\
& \therefore \quad p+q=\frac{2 x}{5} \ldots(1) \quad y=\frac{x}{p q} \\
& \therefore q=\frac{x}{y} \ldots
\end{aligned}
$$

sub (1) and (2) into (ii) s result.

$$
\begin{aligned}
\therefore \quad \frac{x^{2}}{y} m^{4} & =25\left[\frac{4 x^{2}}{y^{2}}-\frac{4 x}{y}\right]\left(\frac{x^{2}}{y^{2}}+1\right) \\
\frac{x^{2}}{y} m^{4} & =\left(4 x^{2}-\frac{4 x \cdot 25}{y}\right)\left(\frac{x^{2}}{y^{2}}+1\right) \\
x^{2} y m^{4} & =\left(4 x^{2} y-4 x \cdot 25\right)\left(x^{2}+y^{2}\right) \\
x y m^{4} & =4(x y-25)\left(x^{2}+y^{2}\right)
\end{aligned}
$$

now multiply both
sides bey

Question 14
(a) (i) $P(4 \cos \theta, 3 \sin \theta)$

$$
\begin{align*}
\frac{d x}{d \theta} & =-4 \sin \theta \quad \frac{d y}{d \theta}=3 \cos \theta \\
\frac{d y}{d x} & =\frac{d y}{d \theta} \times \frac{d \theta}{d x} \\
& =\frac{3 \cos \theta}{-4 \sin \theta} \tag{1}
\end{align*}
$$

equ of tanget at P is $y \quad y-3 \sin \theta=\frac{-3 \cos \theta}{4 \sin \theta}(x-4 \cos \theta)$

$$
\begin{align*}
y-3 \sin \theta & =-\frac{3 \cos \theta x}{4 \sin \theta}+\frac{3 \cos ^{2} \theta}{\sin \theta} \\
\frac{3 \cos \theta x}{4 \sin \theta}+y & =\frac{3 \cos ^{2} \theta}{\sin \theta}+3 \sin \theta \\
\frac{3 \cos \theta x}{4 \sin \theta}+y & =\frac{3 \cos ^{2} \theta+3 \sin ^{2} \theta}{\sin \theta} \\
\frac{3 \cos \theta x}{4 \sin \theta} & +y=\frac{3}{\sin \theta} \\
\text { (1) } \frac{\cos \theta x}{4} & +\frac{y \sin \theta}{3}=1 \ldots(1)
\end{align*}
$$

At Ce; $(4 \cos \theta, 4 \sin \theta)$

$$
\begin{align*}
\frac{d+y}{d x} & =\frac{d y / d \theta}{d x} \frac{d \theta}{d x} \\
& =\frac{4 \cos \theta}{-4 \sin \theta}=\frac{\cos \theta}{-\sin \theta} \tag{1}
\end{align*}
$$

eqn.. if tangent at l is: $y-4 \sin \theta=-\frac{\cos \theta}{\sin \theta}(x-4 \cos \theta)$,

$$
\begin{aligned}
y+\frac{x \cos \theta}{\sin \theta} & =\frac{4 \cos ^{2} \theta}{\sin \theta}+\frac{4 \sin ^{2} \theta}{\sin \theta} \\
y+x \frac{\cos \theta}{\sin \theta} & =\frac{4}{\sin \theta} \\
(1) \frac{\sin \theta}{4} y+\frac{x \cos \theta}{4} & =1 \ldots(2)
\end{aligned}
$$

(ii) Solve (1) and (2) simultaneously

$$
\begin{aligned}
& y=\frac{3}{\sin \theta}-\frac{3 \cos \theta x}{4 \sin \theta} \text { sub } 2 \\
& y-\frac{3 \cos \theta x}{4 \sin \theta}+\frac{x \cos \theta}{\sin \theta}=\frac{4}{\sin \theta}
\end{aligned}
$$

$$
3-3 / 4 \cos \theta x+x \cos \theta=4
$$

$$
x \cos \theta(-3 / 4+1)=1
$$

$$
\begin{equation*}
x=\frac{4}{\cos \theta} \tag{1}
\end{equation*}
$$

sub. back

$$
\begin{align*}
& \therefore y=\frac{3}{\sin \theta}-\frac{3 \cos \theta}{4 \sin \theta} \cdot \frac{4}{\cos \theta} \\
& y=\frac{3}{\sin \theta}-\frac{3}{\sin \theta} \\
& y=0 \\
& \therefore R\left(\frac{4}{\cos \theta}, 0\right) \tag{1}
\end{align*}
$$

so \hat{k} lies on the x-axis.
iii) ON.OR

$$
\begin{aligned}
& N(4 \cos \theta, 0) \\
& R\left(\frac{4}{\cos \theta}, 0\right)
\end{aligned}
$$

(1) $O N \cdot O R=16$ which is indelperentert of P and L.
(b) (i) $\cot 3 \theta=-1$

$$
\begin{aligned}
\therefore \tan 3 \theta & =-1 \\
30 & =\frac{3 \pi}{4}, \frac{7 \pi}{4}, \frac{11 \pi}{4}, \frac{15 \pi}{4}, \frac{19 \pi}{4}, \frac{23 \pi}{4} \\
\theta & =\frac{\frac{\pi}{4}, \frac{7 \pi}{12}, \frac{11 \pi}{12}, \frac{15 \pi}{12}, \frac{\frac{19 \pi}{12}, \frac{23 \pi}{12}}{1}}{(1)}
\end{aligned}
$$

(ii) $\cot 3 \theta=-1$ and $\cot 3 \theta=\frac{t^{3}-3 t}{3 t^{2}-1}$

$$
\begin{aligned}
\therefore-1 & =\frac{t^{3}-3 t}{3 t^{2}-1} \\
1-3 t^{2} & =t^{3}-3 t \\
C & =t^{3}+3 t^{2}-3 t-1
\end{aligned}
$$

but $t=\cot \theta$ (data)
\therefore solis for t are $\cot \pi / 4, \cot \frac{7 \pi}{12}, \cot \frac{19 \pi}{12}$
(1) product of the roots is $\cos \pi / 4 \pi$

$$
\cot \pi / 4 \cdot \cot \frac{7 \pi}{12} \cdot \cot \frac{11 \pi}{12}=-d / a=1
$$

$$
\cot \pi / 4=\cot \frac{7 \pi}{12} \cdot \cot \frac{11 \pi}{12}=1 \ldots(1)
$$

deduct now 2π from $\cot (-\theta)=-\cot \theta$ ot θ (old fin)

$$
\therefore=\cot \pi / 4 x-\cot \frac{5 \pi}{12} x-\cot \frac{9 \pi}{12}=1
$$

$\theta($

$$
\begin{aligned}
& -1 \times \cot \pi / 4 \times \cot \frac{5 \pi}{12} \times \cot \frac{9 \pi}{12}=1 \\
& \therefore \cot \frac{9}{4} \cdot \cot \frac{5 \pi}{12} \cdot \cot \frac{9 \pi}{12}=-1 \\
& \therefore \cot \left(\frac{\pi}{4}\right) \cdot \cot \left(\frac{5 \pi}{12}\right) \cot \left(\frac{9 \pi}{12}\right)
\end{aligned}
$$

(iii) eqn with roots $\tan \frac{\pi}{12}, \tan \frac{5 \pi}{12}, \tan \frac{9 \pi}{12}$

$$
\operatorname{ir} \frac{1}{\cot \pi / 12}, \frac{1}{\cot \frac{5 \pi}{12}}, \frac{1}{\cot \frac{\pi}{12}}
$$

ie $\frac{1}{t}$

$$
\begin{array}{r}
\therefore \tan \text { is. }\left(\frac{1}{t}\right)^{3}+3\left(\frac{1}{t}\right)^{2}-3\left(\frac{1}{t}\right)-1=0 \\
1+3 t-3 t^{2}-t^{3}=0 \tag{1}\\
\therefore \quad\left[t^{3}+3 t^{2}-3 t-1=0\right]
\end{array}
$$

(c)

$$
\begin{align*}
\text { ii } y & =x^{x} \quad \text { for } \quad x>0 \\
y & =e^{x \ln x} \leqslant \ln y=\ln x^{x} \\
\frac{d y}{d x} & =e^{x \ln x} \times\left[x \times \frac{1}{x}+\ln x \times \ln x\right) \tag{1}\\
& =e^{x \ln x}(1+\ln x) \\
& =e^{\ln x^{x}}(1+\ln x) \\
& =x^{x}(1+\ln x)
\end{align*}
$$

(1) for shape.
(1) for min. turning point and starting at $(0,1)$.

Question 15

$\widehat{A D G}=90^{\circ}$ (target meets radius at int anglo)
Similarly $A \hat{E} C=90^{\circ}$ and $\hat{G A F C}=90^{\circ}$

$$
\hat{A}=40^{\circ} \quad(\text { data })
$$

$A D=A E$ (tangents from external point are equally.)
In APGE,
all angles are 90° (proven above)
$A D=A^{\prime} E$ (proven above)
\therefore ADGE is a square

$$
\begin{array}{ll}
\therefore & A D=A E=D G=G E=r \tag{6}\\
\therefore & B O=C-r
\end{array}
$$

$B D=B F \quad$ (tenants drawn from external (ont)
$\because B F=c-r: \quad$ (as $B D=c-5$)
now $A E=$ r

$$
\begin{aligned}
\therefore E C & =b-r \\
\quad C F & =b-r \quad \text { (as } \quad c F=E C)
\end{aligned}
$$

$\therefore B C=B F+F C$ (sum of adjacent lengths)

$$
a=c-r+b-r
$$

$$
a=c+b-2 r
$$

$$
a-c-b=-2 r
$$

$$
\therefore r=\frac{1}{2}(b+c-a)
$$

intercepts:

$$
\begin{aligned}
& y=2 y-\frac{y^{2}}{2} \\
& y^{2}-2 y=0 \\
& y=0 \text { or } y=2
\end{aligned}
$$

length of side of triangle $=x_{2}-x_{1}$

$$
\begin{align*}
& =2 y-\frac{y^{2}}{2}-y \\
& =y-\frac{y^{2}}{2} \tag{1}
\end{align*}
$$

Area of triangle $=\frac{1}{2} a b \sin 60^{\circ}$

$$
\begin{align*}
& =\frac{1}{2} x^{2} \frac{\sqrt{3}}{2} \\
& =\frac{\sqrt{3}}{4}\left(y-y^{2} / 2\right)^{2} \tag{1}
\end{align*}
$$

Volume of single triangular prism:

$$
\delta \gamma=\frac{\sqrt{3}}{4}\left(y-\frac{y^{2}}{2}\right)^{2} \delta y
$$

\therefore Volume of solid:

$$
\begin{align*}
V & =\lim _{8 y \rightarrow 0} \sum_{y=0}^{2} \frac{\sqrt{3}}{4}\left(y-y^{2} / 2\right)^{2} \delta y \\
& =\frac{\sqrt{3}}{4} \int_{0}^{2}\left(y-y^{2} / 2\right)^{2} d y \tag{1}\\
& =\frac{\sqrt{3}}{4} \int_{0}^{2}\left(y^{2}+\frac{y^{4}}{4}-y^{3}\right) d y
\end{align*}
$$

(ii).

$$
\begin{aligned}
& =\sqrt{3} / 4\left[\frac{1}{3} y^{3}+\frac{y^{5}}{20}-\frac{1}{4} y^{4}\right]_{0}^{2} \\
& =\frac{\sqrt{3}}{4}\left[\frac{1}{3} \times 8+\frac{32}{20}-\frac{16}{4}-0\right] \\
& =\frac{\sqrt{3}}{4}\left[\frac{160}{60}+\frac{96}{60}-\frac{240}{60}\right]=\frac{\sqrt{3}}{4} \times \frac{16}{60} \\
& =\frac{\sqrt{3}}{15} \text { unis }^{3}
\end{aligned}
$$

(c) (i)

$$
\begin{align*}
& I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n / 2} d x \\
&=\left[x\left(1-x^{2}\right)^{n / 2}\right]_{0}^{1}+n \int_{0}^{1} x^{2}\left(1-x^{2}\right)^{n / 2-1} d x \tag{0}\\
&=0-n \int_{0}^{1}\left(1-x^{2}+1\right)\left(1-x^{2}\right)^{n / 2-1} d x \\
&=-n \int_{0}^{1}\left(1-x^{2}\right)^{\frac{n}{2}} d x+\int_{0}^{1}\left(1-x^{2}\right)^{n / 2-1} d x \\
&=-n I_{n}+n I_{n-2} \quad\left(a s \frac{n}{2}-1=\frac{n-2}{2}\right) \\
& I_{n}+n I_{n}=n I_{n-2} \\
& I_{n}(1+n)=n I_{n-2}^{n} \\
& I_{n}=\frac{1}{n+1} I_{n-2}
\end{align*}
$$

(c) (ii) Evaluate I_{5}

$$
\begin{aligned}
& I_{5}=\frac{5}{6} I_{3} \\
& I_{3}=3 / 4 I_{1} \\
& I_{1}=\int_{0}^{1} \sqrt{1-x^{2}} d x
\end{aligned}
$$

y_{4} of a circle

$$
\begin{aligned}
& \therefore I_{1}=\frac{1}{4} \pi \times 1^{2}=\frac{\pi}{4} \\
& \therefore I_{3}=3 / 4 \times \pi / 4 \\
&=\frac{3 \pi}{16} \\
& I_{5}=\frac{5}{6} \times \frac{3 \pi}{16}=\frac{5 \pi}{32}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \left(2-m^{2}\right)>0 \\
& m^{2}<2 \\
& -\sqrt{2}<m<\sqrt{2} \\
& b+m> \\
& \quad 0 \quad 0<m<\sqrt{2}
\end{aligned}
$$

Q16(a) (i) $a>0, b>0$ given $a \neq b$
now $(a-b)^{2} \geqslant 0$.

$$
\begin{align*}
a^{2}+b^{2}-2 a b & \geqslant 0 \tag{1}\\
a^{2}+b^{2} & \geqslant 2 a b
\end{align*}
$$

(ii) now $a^{2}+b^{2} \geqslant 2 a b$
similarly

$$
\begin{aligned}
& a^{2}+c^{2} \geqslant 2 a c \\
& b^{2}
\end{aligned}
$$

$$
b^{2}+c^{2} \geqslant 2 b c
$$

$$
\begin{gather*}
\therefore 2\left(a^{2}+b^{2}+c^{2}\right) \geqslant 2(a b+a c+b c) \tag{1}\\
a^{2}+b^{2}+c^{2} \geqslant a b+a c+b c
\end{gather*}
$$

-iii) Let $a=\sin \alpha \quad b=\cos \alpha$
now $a^{2}+b^{2} \geqslant 2 a b$ from (i)

$$
\begin{align*}
& \sin ^{2} \alpha+\cos ^{2} \alpha \geqslant 2 \sin \alpha \cos \alpha \tag{1}\\
& \therefore \sin ^{2} \alpha+\cos ^{2} \alpha \geqslant \sin 2 \alpha
\end{align*}
$$

(iv) $a^{2}+b^{2}+c^{2} \geqslant a b+a c+b c$ from (ii)
let $a=\sin \alpha, b=\cos \alpha, c=\tan \alpha$
$\therefore \sin ^{2} \alpha+\cos ^{2} \alpha+\tan ^{2} \alpha \geqslant \sin \alpha \cos \alpha+\cos \alpha \tan \alpha+\tan \alpha$,
0

$$
\begin{aligned}
& \geqslant \frac{1}{2} \sin 2 \alpha+\sin \alpha+\frac{\sin ^{2} \alpha}{\cos \alpha} \\
& =\frac{1}{2} \sin 2 \alpha+\sin \alpha+\frac{1-\cos ^{2} \alpha}{\cos \alpha} \\
& =\frac{1}{2} \sin 2 \alpha+\sin \alpha+\sec \alpha-\cos \alpha
\end{aligned}
$$

(b) Paul has been chosen, 2 females

So committee is lm, aw

$$
\begin{aligned}
\text { Prob } & =\frac{{ }^{n-1} c_{1}}{n^{n} c_{2}} \\
& =\frac{(n-1)^{!}}{(n-2)!} \times \frac{2!(n-2)!}{n!} \\
& =\frac{2}{n}
\end{aligned}
$$

(c)

$$
\begin{align*}
p(x) & =\left(x^{2}-a^{2}\right) Q(x)+p x+q \\
& =(x-a)(x+a) Q(x)+p x+q \\
P(a) & =p a+q \tag{0}\\
P(-a) & =-a p+q \tag{2}
\end{align*}
$$

(1) $-(2)$

$$
\begin{align*}
p(a)-p(-a) & =p a+q+a p-q \tag{1}\\
& =2 a p \\
\therefore p & =\frac{1}{2 a}[p(a)-p(-a)]
\end{align*}
$$

(1) +2

$$
\begin{aligned}
p(a)+p(-a) & =p a+q-a p+q \\
& =2 q \\
\therefore q & =\frac{1}{2}[p(a)+p(-a)]
\end{aligned}
$$

ii) Given $P(x)=x^{n}-a^{n}$
if n is even; $p(a)=a^{n}-a^{n}=0$

$$
p(-a)=(-a)^{n}-a^{n}=0
$$

from (i) remainder is $p+q$

$$
\begin{gathered}
p=0, q=0 \\
\therefore n e \text { remainder }
\end{gathered}
$$

if n is odd; $p(a)=a^{n}-a^{n}=0$

$$
\begin{gather*}
p(a)=a-a=0 \\
p(-a)=(-a)^{n}-a^{n}=-a^{n}-a^{n}=-2 a^{n} \tag{30}\\
p=\frac{1}{2 a}\left[0-\left(-2 a^{n}\right)\right]=a^{n-1} \\
q=\frac{1}{2}\left[0+\left(-2 a^{n}\right)\right]=-a^{n} \\
\therefore \&(x \in)=a^{n-1} x-a^{n}
\end{gather*}
$$

d) (is)

$$
\begin{aligned}
& S_{n}=1+\sum_{r=1}^{n} \frac{1}{r!} \\
& e-S_{n}=e \int_{0}^{1} \frac{x^{n}}{n!} e^{-x} d x
\end{aligned}
$$

step ones Prove true for $n=1$

$$
\begin{aligned}
& \text { LbS }=e-S_{1} \\
& =e-\left(1+\frac{i}{1!}\right) \\
& =e-2 \\
& \text { RHo }=e \int_{0}^{1} \frac{x^{1}}{11} e^{-x} d x \\
& =e \int_{0}^{1} x e^{-x} d x \\
& =e\left[\left(-x e^{-x}\right)\right]_{0}^{1}+\int_{0}^{1} e^{-x} d x \\
& =e\left(-e^{-1}-0\right)+\left[-e^{-x}\right]_{0}^{1} \\
& =2\left(-e^{-1}-e^{-1}+e^{0}\right) \\
& =e\left(-2 e^{-1}+1\right) \\
& =e\left(-2 \frac{1}{e}+1\right) \\
& =e-2 \\
& =L H S \text {. }
\end{aligned}
$$

step two: Assume true for $n=k$, K is an integer

$$
\text { ie } e-S_{k}=e \int_{0}^{1} \frac{x^{k}}{k!} e^{-x} d x
$$

step three: Prove true for $n=k+1$, ie $e-S_{k+1}=e \int_{0}^{1} \frac{x^{k+1}}{(k+1)!} e^{-x} d x$

$$
\begin{aligned}
L H S_{n} & =e-S_{k+1} \\
& =e-\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots .+\frac{1}{k!}+\frac{1}{(k+1)!}\right) \\
& =e \int_{0}^{1} \frac{x^{k}}{k!} e^{-x} d x-\frac{1}{(k+1)!} \quad(\text { by assumption })
\end{aligned}
$$

$$
\begin{align*}
\text { RHS } & =e \int_{0}^{1} \frac{x^{k+1}}{(k+1)!} e^{-x} d x \\
& =\frac{e}{(k+1)!}\left[-x^{k+1} e^{-x}\right]_{0}^{1}-\frac{e}{(k+1)!} \int_{0}^{1}(k+1) x^{k} e^{-x} d x \\
& =\frac{e}{(k+1)!} x-e^{-k}+\frac{d u}{d x}=(k+1) x^{k} \frac{d v}{d x}=e^{-x} \\
& =\frac{-1}{(k+1)!} x^{k} x^{k} e^{-x} d x \\
& =\text { LHS } \tag{0}
\end{align*}
$$

step Four: By the Principle of Mathematical Induction, the result is tree fris all integers; $n>y$.
(ii) Deduce $0<e-s_{n}<\frac{3}{(n+1)}$:
now $e \int_{0}^{1} \frac{x^{n}}{n!} e^{-x} d x>0$ as $e>0$ and $e^{-x}>1$ and $x^{n} \geqslant 0$ for $x>0$

$$
\begin{aligned}
e<3: e \int_{0}^{1} \frac{x^{n}}{n!} e^{-x} d x & <3 \int_{0}^{1} \frac{x^{n}}{n!} \cdot e^{-x} d x \\
& <3 \int_{0}^{1} \frac{x^{n}}{n!} d x \text { as } e^{-x} \leq 1 \\
& =3\left[\frac{x^{n+1}}{n!(n+1)}\right]_{0}^{1} \text { for } 0<x<1 \\
& =\frac{3}{(n+1)!}-0 \\
00 \quad 0<e-s_{n} & <\frac{3}{(n+1)!}
\end{aligned}
$$

(iii) Prove that $\left(e-S_{n}\right) n!$ isnt an integer. now $e-s_{n}<\frac{3}{n!(n+1)}$ from (ii)

$$
\begin{aligned}
& \left(e-S_{n}\right) n!<\frac{3}{n+1} \\
& \frac{3}{n+1} \leqslant 1 \quad \text { for } n=2,3,4 \\
& \therefore \quad\left(e-s_{n}\right) n!<1
\end{aligned}
$$

$\therefore\left(e-S_{n}\right) n$! is not an integer for $n=2,3,4, \ldots \ldots$
(iv) Assume $e=p / q$
now $\left(e-S_{n}\right) n!=\left[e-\left(1+\sum_{r=1}^{n} \frac{1}{r!}\right)\right] n!$

$$
\begin{aligned}
& =\left(\frac{p}{q}-1-\sum_{r=1}^{n} \frac{1}{r!}\right) n! \\
& =\frac{p n!}{q}-n!-\left(\sum_{r=1}^{n} \frac{1}{r!}\right) n!
\end{aligned}
$$

now as q is any integer and $n!=n(n-1)(n-2) \times \ldots 3 \times 2$. which includes " q ", ". n ! is divisible by q
For $n>r$, then $n!\times \sum_{r=1}^{n} \frac{1}{r!}$ must be an integer
$\therefore \frac{p n!}{q}-n!-\left(\sum_{n=1}^{n} \frac{1}{r!}\right)^{-n} n$ is an integer
bt this contradids (iii) where $\left(e-s_{n}\right) n$! is nat an integer. $\therefore e \neq p / q$ so e is not rational.

