St George Girls High School

Trial Higher School Certificate Examination

2018

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Section I	/10
Section II	
Question 11	/15
Question 12	/15
Question 13	/15
Question 14	/15
Question 15	/15
Question 16	/15
Total	/100

Total Marks – 100

Section I Pages 2 – 6

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section
- Answer on the multiple choice answer sheet provided at the back of this paper

Section II

Pages 7 – 16

90 marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section
- Begin each question in a new writing booklet

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1. Find $\int \frac{1}{x^2 + 6x + 13} dx$ (A) $\sin^{-1}\left(\frac{x+3}{2}\right) + c$ (B) $\frac{1}{2}\cos^{-1}(x+3) + c$ (C) $2\tan^{-1}\left(\frac{x+3}{2}\right) + c$ (D) $\frac{1}{2}\tan^{-1}\left(\frac{x+3}{2}\right) + c$

2. The polynomial
$$P(x) = x^3 + x - 3$$
 has roots α , β and γ

What is the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$?

- (A) $\frac{1}{3}$ (B) $-\frac{1}{3}$
- (C) 0
- (D) 3

3. If
$$=\frac{\sqrt{3}i+1}{i}$$
, find \bar{z} in modulus-argument form?
(A) $2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
(B) $2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$
(C) $4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$
(D) $4\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)$

Section I (cont'd)

4. The diagram below shows the graph of the function y = f(x).

A second graph is obtained from the function y = f(x).

Which equation best represents the second graph?

- (A) $y = [f(x)]^2$
- (B) y = f(|x|)
- (C) y = |f(x)|
- (D) y = |f(|x||).
- 5. It is given that z = -1 + 2i is a root of $z^3 + 4z^2 + 9z + b = 0$, where b is a real number. What is the value of b?
 - (A) 10
 - (B) -12
 - (C) 10
 - (D) 15

Section I (cont'd)

6. The region bounded by the curve $y = \sqrt{2 - x}$, the x axis and the y axis is rotated about the line x = 2 to form a solid.

Which one of these expressions represents the volume of the solid?

- (A) $\pi \int_0^{\sqrt{2}} (2^2 y^4) dy$
- (B) $\pi \int_0^{\sqrt{2}} (2^2 y^2) dy$

(C)
$$\pi \int_0^{\sqrt{2}} (2 - y^2)^2 dy$$

(D)
$$\pi \int_0^{\sqrt{2}} (2-y)^2 dy$$

- 7. Consider the ellipse with the equation $\frac{x^2}{9} + y^2 = 1$. What are the coordinates of the foci of the ellipse?
 - (A) $(\pm 6\sqrt{2}), 0$)
 - (B) $(0, \pm 6\sqrt{2}))$
 - (C) $(0, \pm 2\sqrt{2})$
 - (D) $(\pm 2\sqrt{2}), 0)$

8. Consider the square slices in the right square pyramid below

Find an expression for x in terms of s, h and y.

(A)
$$x = \frac{s(h+y)}{h}$$

(B)
$$x = \frac{s(y-h)}{h}$$

(C)
$$x = \frac{s(h-y)}{h}$$

(D)
$$x = \frac{h(h-y)}{s}$$

Section I (cont'd)

9. A rock of mass *m* falls vertically from rest at the top of a cliff in a medium whose air resistance is proportional to the velocity of the rock. If the rock falls to ground level under the influence of *g*, the acceleration due to gravity, which of the following is the correct expression for the velocity of the rock, given that downwards is taken to be the positive direction?

(A)
$$v = \frac{g}{k}(1 + e^{-kt})$$

(B) $v = \frac{g}{k}(1 - e^{-kt})$

(C)
$$v = \frac{g}{k}(e^{-kt} + 1)$$

(D)
$$v = \frac{g}{k}(e^{-kt} - 1)$$

- 10. A particle is projected with a speed of 20 m/s and passes through a point *P* whose horizontal distance from the point of projection is 30 m and whose vertical height above the point of projection is 8.75 m. What is the angle of projection? (Take $g = 10 m/s^2$).
 - (A) $\tan^{-1}\left(\frac{2}{3}\right)$ (B) $\tan^{-1}\left(\frac{3}{2}\right)$
 - (C) $\tan^{-1}\left(\frac{3}{4}\right)$
 - (D) $\tan^{-1}\left(\frac{4}{3}\right)$

Section II 90 marks Attempt Questions 11 – 16 Allow about 2 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Que	estion 11	(15 marks) Use a SEPARATE writing booklet	Marks
(a)	z is a ((i)	complex number such that $ z = 2$ and $\arg z = \frac{\pi}{3}$. Evaluate z^5 .	1
	(ii)	Write down z in cartesian form.	1
	(iii)	Find the value of $\frac{1}{z}$ in cartesian form.	2
	(iv)	If $\omega = 2 - 3i$, find the value of $\omega^2 z$.	1
(b)	Find		
	(i)	$\int \frac{x}{1+x^4} dx \; .$	2
	(ii)	$\int \tan^3 x dx$.	2

- (c) By considering the complex number z = x + iy in the Argand plane and on separate Argand diagrams,
 - (i) sketch the region of the complex plane for which the complex number z = x + iyhas a positive real part and $|z + 3i| \le 2$.
 - (ii) sketch the locus of $\arg \bar{z} = \frac{\pi}{3}$. 1
- (d) Find the equation of the normal to the curve $x^2 xy + y^3 = 1$ at the point *P*(1, 1) to the curve.

Question 12 (15 marks)	Use a SEPARATE writing booklet	Marks
------------------------	--------------------------------	-------

Let Q(x) be a polynomial. (a)

> $Q(x) = px^3 + 2x^2 + qx - 4$, where p and q are real numbers. Find the values of p and q given that $(x + 1)^2$ is a factor of Q(x).

(b) (i) Find the values of *a*, *b*, and *c* such that: $\frac{x+1}{(x+3)(x+2)^2} = \frac{a}{(x+3)} + \frac{b}{(x+2)} + \frac{c}{(x+2)^2}$ 3 (ii) Hence find $\int \frac{x+1}{(x+3)(x+2)^2} dx$. 2

Let *S* be the solid having its base the region bounded by the curve $x^2 + y^2 = 16$. (c)

Every plane of the solid taken perpendicular to the x –axis is an isosceles rightangled triangle with the hypotenuse in the plane of the base.

Find the volume of the solid *S*.

(d)

In the diagram above, *OABC* is a parallelogram with $OA = \frac{1}{2}OC$. The point A represents the complex number $-\frac{1}{2} + i\frac{\sqrt{3}}{2}$. If $\angle AOC = \frac{\pi}{3}$, what complex number does C represent?

Page 8

3

3

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a)

The graph of y = f(x) is shown above.

Draw separate one-third page sketches of these functions. Indicate clearly any asymptotes and intercepts with the axes.

(i) y = |f(x)| 1

(ii)
$$y = \{f(x)\}^3$$
 2

(iii)
$$y^2 = f(x)$$
 2

(iv)
$$y = f(1-x)$$
 2

- (b) Solve the polynomial equation $x^4 6x^3 + 9x^2 + 4x 12 = 0$, given that the equation 3 has a double root.
- (c) The region bounded by the parabola y = 4x(3 x) and the x -axis is rotated about the 3 y -axis to form a solid.
 Use the method of cylindrical shells to find the volume of the solid.
- (d) The equation $x^3 5x 2 = 0$ has roots α, β and γ . Find the equation with integer coefficients that has roots $\alpha + 1$, $\beta + 1$ and $\gamma + 1$.

Marks

Que	stion 14	4 (15 marks) Use a SEPARATE writing booklet.	Marks
(a)		oints $P\left(2p,\frac{2}{p}\right)$, $p \neq 0$, and $Q\left(2q,\frac{2}{q}\right)$, $q \neq 0$, are two points on the rectangular rbola $xy = 4$.	
	(i)	Show that the equation of the chord PQ is $x + pqy = 2(p + q)$.	1
	(ii)	Prove that the tangent at <i>P</i> has equation $x + p^2 y = 4p$.	2
	(iii)	The tangents at P and Q intersect at T . Find the coordinates of T .	2
	(iv)	The line through <i>T</i> , parallel to <i>PQ</i> passes through the point (0, 2). Show that $p + q = 4$.	2
(b)	Finc	$\int \frac{\ln x}{x^2} dx$	2

(c) (i) Prove the identity
$$\frac{1}{4}\cos 3A = \cos^3 A - \frac{3}{4}\cos A$$
. 2

- (ii) Show that $\cos 3A = \frac{-1}{2\sqrt{2}}$, given that $x = 2\sqrt{2} \cos A$ satisfies the cubic 2 equation $x^3 6x + 2 = 0$.
- (iii) What are the three roots of the equation $x^3 6x + 2 = 0$? 2 Answer correct to four decimal places.

2

Question 15 (15 marks)Use a SEPARATE writing booklet.Marks

(a) By using the substitution
$$t = \tan \frac{\theta}{2}$$
, show that $\int_0^{\frac{\pi}{3}} \sec \theta \, d\theta = \ln \left(2 + \sqrt{3} \right)$. 3

(b)
$$I_n = \int_1^e (1 - \ln x)^n dx$$
, $n = 0, 1, 2, 3, ...$

(i) Show $I_n = -1 + nI_{n-1}$, n = 1,2,3,... 2

(ii) Hence evaluate
$$I_3$$
.

(c) The Hyperbola *H* has equation $9x^2 - 16y^2 = 144$.

(i)	Write down the eccentricity for this hyperbola and find the coordinates of its foci <i>S</i> and <i>S</i> '.	2
(ii)	If $P(x_1, y_1)$ is an arbitrary point on <i>H</i> , prove that the equation of the tangent <i>T</i> at <i>P</i> is: $9xx_1 - 16yy_1 = 144$.	2
(iii)	Hence find the coordinates of the point G at which the tangent T cuts the x – axis.	1
(iv)	Hence show that $SP = \frac{5x_1 - 16}{4}$ and that $\frac{SP}{S'P} = \frac{SG}{S'G}$.	3

Question 16 (15 marks) Use a SEPARATE writing booklet.

a) (i) A particle of mass *m* is projected vertically upwards under gravity *g*, the air resistance to the motion being $\frac{mgv^2}{a^2}$ when the speed is *v*, where *a* is a constant.

Show that during the upward motion of the particle

$$v\frac{dv}{dx} = -\frac{g}{a^2}(a^2 + v^2) \ .$$

where x is the upward motion of the particle.

(ii) Show that the greatest height reached, given the speed of the projection u, is

$$\frac{a^2}{2g}\ln\left(1+\frac{u^2}{a^2}\right)$$

b) In the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b), *B* and *B'* are two points where the ellipse cuts the y - axis. The tangents at *B* and *B'* to the ellipse intersect the tangent at *P* in *Q* and *Q'* respectively. Let *P* be the point $(a \cos \theta, b \sin \theta)$. Draw a diagram to represent this information. If the equation of the tangent at *P* is $bx \cos \theta + ay \sin \theta - ab = 0$, show that $BQ \times B'Q' = a^2$.

- (c) A particle is projected, with an angle of θ , form the origin with initial velocity U to pass through a point (a, b).
 - (i) Show that the Cartesian equation of the motion of the particle is given by 3

$$y = \frac{-gx^2}{2U^2} \sec^2 \theta + x \tan \theta$$
. You must DERIVE all equations of motion.

(ii) Prove that there are two possible trajectories if:

$$(U^2 - gb)^2 > g^2(a^2 + b^2).$$

End of Examination

2

3

4

MATHEMATICS EXTENSION 2 - QUESTION Multiple Choice Q1-10 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** $\frac{1}{x^2+6x+13} dx = \int_{n^2+6x+9+13-9}^{1}$ _ dx $=\int \frac{1}{\left(\pi+3\right)^2+4} dx$ $= \frac{1}{2} + an^{-1} (\pi + 3) + c$ \mathcal{D} 2. $P(x) = x^3 + x - 3$ $\alpha + \beta + \gamma = 0$ $\alpha \beta_{j} = 3$ $\alpha\beta + \beta_f + \alpha_f = 1$ $\frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\beta} + \frac{1}$ X ____αβγ <u>।</u> २ 3. 3 = 131+1 x 1 $=-\sqrt{3}+i$ = 53 - 1 $\overline{z} = \sqrt{3} + i$ $\overline{z} = \sqrt{(\sqrt{3})^2 + (1)^2}$ $= \sqrt{4} = 2$ $\arg \overline{z} = \tan^{-1} \frac{1}{\sqrt{3}}$ $=\pi$ \vdots $\overline{g} = 2cis\pi$ A 4. The portion where 230 hos been reflected about the y-axis R So g(x) = g(-x)

MATHEMATICS EXTENSION 2 – QUESTION SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS 5. z = -1+zi is a root of P(z) $\overline{z} = -1-zi$ is also a root. So a = -1 + Zi, B = -1 - Zi and fare 3 roots Sum of nots: a+ B+3 = -4 -1+2i - 1 - 7i + y = -4-2 + y = -4y = -2Product of roots: (-1+2i)(-1-2i)-2 = -b $(1+4) \times -2 = -b$ b = 101 6. J2+ $r_2 = 2$ $\frac{1}{2} = \frac{r_{1} = 2 - n}{A_{\text{waske}} = \pi (r_{2}^{2} - r_{1}^{2})}$ $= \pi \left(2^{2} - (2 - \chi)^{2} \right)$ $= \pi (z^{2} - (y^{2}))$ $V = \int^{\sqrt{2}} \pi (z^{2} - y^{4}) dy$ A 7. $\frac{\pi^2}{a} + \frac{y}{2} = 1$ Using $b^2 = q^2(1-e^2)$ $1 = 9(1 - e^2)$ $\frac{1}{q} = 1 - e^{2}$ $e^{2} = 1 - \frac{1}{q} = \frac{8}{q}$ $\frac{e}{3} = 2\sqrt{2}$ Foci = $(\pm ae, o)$ = $(\pm 3 \times \frac{2\sqrt{2}}{3}, o)$ $=(\pm 2\sqrt{2}, 0)$

MATHEMATICS EXTENSION 2 - QUESTION Multiple Choice		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
8.TA		
In AABC MAADE	-	
$h B = \frac{1}{2} \times C = BC = AB$		
DE AO		
$\frac{1}{2}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	_	
x = s(h - y)		
h h		<u> </u>
$\frac{9}{2i} = g - kv$		
$\begin{array}{rcl} q & \dot{n} &= g - kv \\ \hline dt & \underline{i} \\ \overline{dv} & g - kv \end{array}$		
$\int_{0}^{t} t dt = \int_{0}^{v} \frac{1}{g - hv} dv$		
$t = -\frac{1}{k} \int \ln(g - kv) - \ln g$.,,
K L (G K) (G)		
$-kt = \ln(g - kv) - \ln g$		
$(\alpha - k_{7}\tau)$		
$=\ln\left(\frac{g}{2}\right)$		
e = g - kv		
i lear		
$= 1 - \frac{k_0}{9}$		
-kt		• · ·
9	han an a	
$v = 9 (1 - e^{-kt})$		B
K		_

-

MATHEMATICS EXTENSION 2 - QUESTION Multiple Choice			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
10. $\chi = V + \cos \alpha$, $y = -\frac{1}{2}gt^2 + V + \sin \alpha$			
$30 = 20 \pm \cos x$			
t = <u>3</u>			
2 COS X			
$y = -\frac{gt^2}{2} + v + \sin d$	· ·		
$\frac{8.75 = -1}{2} \times 10 \times t^2 + 20 + 514 d$			
35 = -20 t ² + 80 tsind - (2			
Sub (m(2))	1		
$\frac{506}{35} = -20 \int \frac{3}{2\cos \alpha} \int \frac{2}{3} \frac{3}{2\cos \alpha} \sin \alpha$			
$= -45 \text{sec}^2 + 120 \text{tang}$ $= -9 \left(1 + \tan^2 x \right) + 24 \tan x$		ng manang man	
9 tan2 x - 24 tanx + 16 = 0	· · ·		
$(3 + an \alpha - 4)^2 = 0$:		
3tand =4			
tand = 4	i	·····	
5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
$d = tan^{-1} 4$		<u>()</u>	
ر			
		,	

MATHEMATICS EXTENSION 2 – QUESTION 11			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
$a) \perp z = 2cisE$	_		
$\overrightarrow{a} \perp z = 2 \operatorname{cis} \overrightarrow{F}$ $\therefore z^{5} = 2^{5} \operatorname{cis} \left(\frac{5}{7} \right)$ $= 32 \operatorname{cis} \overset{5}{7} \overset{5}{7}$	1		
= 32 cis 5		······································	
or $32 \operatorname{cis}\left(\frac{-\pi}{3}\right)$			
or 16-1653 i			
$ii 2(cos \mp + i sin \mp) = 2(\pm + i \frac{\sqrt{2}}{2})$			
= 1+ iJ3			
\overline{z} $1+i\sqrt{3}$			
<u> </u>	1		
= 1+ils × 1-il3	<u>}</u> .		
1.5			
$\frac{2}{1-i\sqrt{3}}$	4. + H-H-H-A marminina and a second		
$= 1 - i\sqrt{3}$	99 - 99 - 99 - 99 - 99 - 99 - 99 - 99		
4			
1 . 6		de fe-ren en an ann a an	
$=\overline{4}$			
$iv_{\omega} \omega^{2} z = (2-3i)(2-3i)(1+i\sqrt{3})$			
$\frac{i}{2} \omega^2 z = (2 - 3i)(1 + i\sqrt{3})$ = (4 - 12i + 9i ²)(1 + i\sqrt{3})			
$= (-5 - 12i)(1 + i\sqrt{3})$ = -5 - 12 \sqrt{3} i^2 - 12i - 5\sqrt{3} i			
$= -5 - 12\sqrt{3}i^{2} - 12i - 5\sqrt{3}i$			
$= -5 + 12\sqrt{3} - (5\sqrt{3} + 12)i$			

MATHEMATICS EXTENSION 2 – QUESTION 11 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS ら i let u = x2 du _ 1,c du=2xdx $\int \frac{x}{1+x^4} \frac{dx}{2} = \frac{1}{2} \int \frac{2x}{1+(x^2)^2} \frac{dx}{1+(x^2)^2}$ Everyone remembered to add "+C"! $=\frac{1}{2}\int \frac{du}{1+u^2}$ I $=\frac{1}{2}$ ton x^{2} + C I ii (ta3xdx = (ta2xtaxdz =) (see 2x-1) torx dx = (sec2xtnx dx - (toxdx = fectutoxchx + (-Sinx dx = tonix + h | cosx | + C I 2) i Essertially correct region All details (including broken line, open circles, labels on points) 12 re 1/2 (2,-3)

MATHEMATICS EXTENSION 2 – QUESTION 11 MARKER'S COMMENTS SUGGESTED SOLUTIONS MARKS) ii FRE I d) 2c2 - 2cy + y3 = 1 Differentiating implicitly $3y^2 dy = 0$ 2x 3y2dy redy Jx Jz $\frac{dy}{dx} = \frac{y - 2x}{\frac{3}{2} - \frac{x}{2}}$ At P(1,1) dy dx $\frac{1-2}{3-1}$ = -½ .: gradient of tagent is -½ .: gradient of normal is 2 Equation of normal y-1 = 2(x-1) y = 2x - 2 + 1 $\therefore y = 2x - 1$ 1

MATHEMATICS EXTENSION 2 – QUESTION 1/2SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS a) (x+1)² is a factor of Q(x) means x =-1 is a root of multiplicity 2 of Q(x). $Q(n) = pn^3 + 2n^2 + qn - 4$ $Q'(x) = 3px^2 + 4x + q$ Now O(-1) = 0 and O'(-1) = 0 $S_0(-1) = -p + 2 - q - 4 = 0$ -p - q = 2 $p + q = -2 \dots Q$ Q'(-1) = 3p - 4 + q = 03p+q=4--c1 (2) - 02p = 6 p=3 sub in () 1/2 3 + q = -21/2 9 = -5 i p=3, q=-5

MATHEMATICS EXTENSION 2 – QUESTION (2)SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** $\frac{b)^{i}}{(n+3)(n+2)^{2}} = \frac{a}{n+2} + \frac{b}{(n+2)^{2}} + \frac{c}{(n+2)^{2}}$ care needs to be taken when $n+1 = a(n+2)^2 + b(n+3) + c(n+3)$ multiplying through by the LCD. when x = -2; -1 = 0 + 0 + c1 Remember: c = -1 $LCO = (x+3)(x+z)^2$ when 2=-3: -2= a + 0+0 <u>a = -2</u> 1 Equating $\cot f x^2$: $0 = \alpha + b$ 0 = -2 + b1 b=2 $\therefore a=-2, b=2, c=-1$ $\frac{ii')}{T = (2x+1)^2} dx$ $\int (x+3)(x+2)^2$ This part was done well $= \int \frac{-2}{x+3} dx + \int \frac{2}{x+2} dx - \int \frac{dx}{(x+2)^2}$ $= -2 \ln |x+3| + 2 \ln |x+2| - \int (x+2)^{-2} dx$ $= 2 \left[\ln | n+2| - \ln | n+3| \right] - (n+2)^{-1} + c$ $= 2 \ln \left| \frac{x+2}{x+2} \right| + \frac{1}{x+2} + c$

MATHEMATICS EXTENSION 2 – QUESTION 1/2SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS Area of right-angled isosceles triangle: $A = \frac{1}{2}bL$ $2y \qquad A = \frac{1}{2}s^{2} \qquad - - 0$ Care needs to be taken when Using Pythagoras Theorem: finding the area of the right angled isosceles triangle witz $8^{2} + 8^{2} = (2y)^{2}$ $\frac{2s^{2} = 4y^{2}}{\frac{s^{2}}{2} = \frac{y^{2}}{2} = -2$ ľ but $\frac{\pi^{2} + y^{2}}{y^{2}} = \frac{16}{16 - \pi^{2}}$ $\frac{y^{2}}{x^{2}} = \frac{16 - \pi^{2}}{x^{2}} = \frac{-\pi^{2}}{3}$ $\frac{5^{2}}{3^{2}} = \frac{16 - \pi^{2}}{2}$ $\frac{5^{2}}{3^{2}} = \frac{16 - \pi^{2}}{2}$ Sub in (1) $A = \frac{i}{2} \left[2 \left(\frac{i}{6} - x^2 \right) \right]$ $= 16 - \pi^2$ $\delta V = (16 - n^2) \, \delta \pi$ $V = \lim_{\delta x \to c} \sum_{x=-4}^{4} (16 - x^2) \delta x$ $V = \int_{-4}^{4} \frac{16 - n^2 \, dn}{\pi^2}$ $= 2 \times \int_{-\pi}^{4} \frac{16 - \pi^2 dx}{\pi}$ $= 2 \left[\frac{16 \times - \chi^3}{2} \right]^4$ $= 2\left(\left[\frac{16}{x4} - \frac{(4)^{3}}{2}\right] - 0\right)$ $= \frac{256}{2} u^3$

MATHEMATICS EXTENSION 2 – QUESTION (7)SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** d) $\vec{DA} = \frac{1}{2} \vec{OC}$ B $|OA| = \frac{1}{2} |OC|$ ۶C Please refer to alternative method overleaf. A 1.c |oc| = 2|OA|but $\frac{(OA) = \sqrt{\left(\frac{-1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}}{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$ = $\begin{bmatrix} 1 \\ -4 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \end{bmatrix}$ = \[4 4 4 =1 $\therefore |oc| = 2x1$ 1 and $\sqrt{\frac{32}{32}}$ arg $OA = \tan^{-1} \frac{\sqrt{32}}{-\frac{1}{2}}$ = tan - 53 $= 2\pi$ be LADC = T3 $\frac{1}{3}, \ \frac{1}{2}\cos(2\pi) = \frac{2\pi}{3} - \frac{\pi}{3}$ 1 二丁 $S_0 C = 2 cis T_3$ $= 2\left(\omega s T_{1} + i s in T_{2}\right)$ $= 2\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)$ = 1 + 13i

MATHEMATICS EXTENSION 2 - QUESTION 12 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS Alternative solution 12 (d) NOTE: Multiplying C(3) through by CISO in an anticlockwise Also $\overrightarrow{OA} = cis \frac{2\pi}{3}$ $\vec{oc} = 2 \times \vec{OA} \times \vec{cis} \left(-\frac{\pi}{3} \right)$ direction gives A(z) and A(z)= C(z) cis O So to find C $= 2 \times c_{15} \frac{2\pi}{1} \times c_{15} \left(\frac{-\pi}{3}\right)$ $= 2 \operatorname{cis} \left(\frac{2\pi}{3} + \frac{-\pi}{3} \right)$ we use $= 2 \operatorname{cis} \pi$ C(3) = A(3)cis(-6)

MATHEMATICS EXTENSION 2 – QUESTION 13 MARKER'S COMMENTS SUGGESTED SOLUTIONS MARKS Crucial features: <u>iv y= f(1-x)</u> Intercepts at x20 and x24 Asymptote af Maximum at y=-1 Note: part marks could be earned by building up your onsur with a series of simpler transformation og. sketching y=f(-x) was helpful. Crucial features: 111 y2 = f(x) · Vertical at x-intercepts Maximum at 52 y= V2 X Smooth, symmetric -52 curve

MATHEMATICS EXTENSION 2 – QUESTION 13 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS b Let P(x)=x4-6x3+9x+4x-12 $P'(x) = 4x^{5} - 18x^{2} + 18x + 4$ P(2) = 16 - 48 + 36 + 9 - 12P'(z) = 32 - 72 + 36 + 4= 0 : x=2 is the dable root $(2c-2)^2$ is a factor Ì $x^2 - 2x - 3$ $x^2 - 4x + 4 \int x^4 - 6x^3 + 9x^2 + 4x - 12$ $x^4 - 4x^3 + 4x^2$ Note that this -2103 + 522 +4x -2203 +822 -8x question asked -3x2 +12x -12 for a solution. -3112 +12x -12 Facturising was useful, b-7 not .: >c4 -6>c3 +9>c2 +4x -12 = (x-2) (x2 -2x-3) 1 erough to ear $\frac{2(x-2)^{2}(x-3)(x+1)}{(x-3)(x+1)}$: He solutions of $x^{4} - 6x^{3} + 9x^{2} + 4x - 12 = 0$ full monks. ove x = -1, x = 2, x = 3I OF x=2 is the darble root (aschare) 1 Let the other roots be d and β $d + \beta + 2 + 2 = 6$ (sum of roots) +β=2 ∠ + β + 2 + 2 = -12 (product) $\beta = -3$.: the roots are -1, 3, 2 and 2 - x=-1, x=2, x=3

MATHEMATICS EXTENSION 2 – QUESTION 13 MARKS MARKER'S COMMENTS SUGGESTED SOLUTIONS 2 - 6 - Srck P(x,y) 3 Ser 2175 $\frac{1}{2} \cdot \int V = 2\pi \chi - y \cdot \int x = 2\pi \chi - y \cdot \int x = 2\pi \chi \cdot 4\pi (3 - \pi) \cdot \int x = 3$ $24\pi x^2 - 8\pi x^3 dx$ 1 $\begin{bmatrix} 8\pi x^3 - 2\pi x^4 \end{bmatrix}$ 2 $=(8_{\pi}\cdot 27 - 2\pi \cdot 81) - (0 - 0)$ $= 54\pi \text{ units}^3$

MATHEMATICS EXTENSION 2 – QUESTION 13 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS d) If $x^3 - 5x - 2 = 0$ $\widehat{(}$ Let X = y + 1 $\therefore y = X - 1$ sub x - 1 into ① $\frac{3}{(x-1)^{3} - 5(x-1) - 2 = 0}{x^{3} - 3x^{2} + 3x - 1} - 5x + 5 - 2 = 0$ $x^{3} - 3x^{2} - 2x + 2 = 0$ 1 Note that this question requested on equation Giving a function (e.g. P(x) = x³-3x²-2x+2) as your onsure does not aswer the question.

MATHEMATICS EXTENSION 2 – QUESTION 14		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) i) $P(2\rho, \frac{2}{\rho}) Q(2q, \frac{2}{q})$		Part (a) i) ii) and
Gradient of PQ: $m_{pQ} = \frac{2}{p} - \frac{2}{q}$		done.
$\frac{2p - 2q}{= \frac{2q - 2p}{p2}}$		
2p-29	· · · ·	
$= \frac{2q - 2p}{pq} \times \frac{1}{2(p-q)}$		
$= -\frac{2(p-2)}{p_2} \times \frac{1}{2(p-2)}$		
$= -\frac{1}{P2}$	1/2	
Equation of chord PQ		
$y - \frac{2}{P} = \frac{-i}{Pq}(n - 2p)$	1/2	
pqy - 2q = -x + 2p	J	
x + pqy = 2(p+q)		
ii) For xy = 4.		
Differentiating implicitly write $y + x \cdot \frac{dy}{dx} = 0$		
$\frac{-dy}{dx} = \frac{-y}{x}$		
$= \frac{-2p}{-2p}$		
$= \frac{-2}{P} \times \frac{1}{2p}$		
= -1 P^2		

•

•

MATHEMATICS EXTENSION 2 - QUESTION /4-SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS a) Cont'd Equation of tangent: y - 2 = -i(x - 2p) $p = p^2(x - 2p)$ $p^2y - 2p = -x + 2p$ iii) Similarly tangent at Q: $x + q^{2}y = 4q - ...(2)$ (i) -(2) $(p^{2} - q^{2})y = 4(p-q)$ (p-q)(p+q)y = 4(p-q) (p-q)(p+q)y = 4(p-q) 4 $y = \frac{4}{p+2}$ sub in (1) $x + p^2 \left(\frac{4}{p+q}\right) = 4p$ $x = 4p - \frac{4p^2}{p}$ $=4_{p(p+q)}-4_{p^{2}}$ $\frac{-4p^2}{p+q}$ $\frac{p+q}{p+q}$ $\frac{4p^2+4pq}{p+q}$ $\frac{4pq}{p+q}$ ". T is $\left(\frac{4pq}{p+q}, \frac{4}{p+q}\right)$

MATHEMATICS EXTENSION 2 – QUESTION (4)SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS a) iv) Using T and Gradient of PD, the line through T, parallel to PQ is: Some students did not substitute the $y - \frac{4}{p+q} = -\frac{1}{pq} \left(x - \frac{4pq}{p+q} \right)$ _1__ point T and (0,2) correctly in the equation of a line, Sub (0,2) in this equation othorwise the $\frac{2 - \frac{4}{p+2}}{p+2} = \frac{-i}{pq} \left(\frac{-4pq}{p+2} \right)$ question was done 1 quite well $\frac{2(p+q) - 4}{2(p+q)} = 8$ $\frac{p+q}{p+q} = 4$ Using Integration by parts $\frac{\ln n \, dx = uv - \int vu' \, dn \qquad u = \ln x \ v' = i}{n^2}$ $= \ln n - 1 - \int \frac{1}{n} \frac{1}{n$ 1 $\frac{-\ln \chi}{\chi} + \int \frac{1}{\chi^2}$ $\frac{-\ln x}{n} = \frac{1}{x} + c$ 1

MATHEMATICS EXTENSION 2 – QUESTION (4 - 4)SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS c) $\frac{1}{\cos 3A} = \cos(2A + A)$ = cos 2AmsA - sin 2A sin A 1 = (2cos²A-1) cosA-2sinA cosA sinA $= 2\cos^3 A - \cos A - 2\cos A \sin^2 A$ $= 2\cos^{3}A - \cos A - 2\cos A(1 - \cos^{2}A)$ 1 $= 2\cos^{3}A - \cos A - 2\cos A + 2\cos^{2}A$ Ž $= 4\cos^3A - 3\cos A$ -4 $\frac{1}{4}\cos 3A = \cos^3 A - \frac{3}{4}\cos A$ ii) For x 3-6x+2=0 --- 2 Sub $x = 2\sqrt{2} \cos A$ in (2) $(2\sqrt{2}\cos A)^3 - 6(2\sqrt{2}\cos A) + 2 = 0$ 1 $16\sqrt{2}\cos^{3}A - 12\sqrt{2}\cos A + 2 = 0$ $16\sqrt{2}\cos^{3}A - 12\sqrt{2}\cos A = -2$ $\frac{\cos^{3}A - 3}{4} \cos A = \frac{-2}{16\sqrt{2}}$ from () 1 $\frac{1}{4}\cos^{3}A = \frac{-2}{16\sqrt{2}}$ $\cos 3A = \frac{-1}{8\sqrt{2}} \times 4$ = -(iii) Three nots of 2 - 61+2 =0 are 3 roots of $\cos 3A = -\frac{1}{2\pi}$ $3A = 2\pi\pi + \cos^{-1}(\frac{-1}{2\pi})$ $A = 2n\pi + \cos^{-1}(\frac{-1}{2\pi})$ 1 mark to get 1 solution and 1/2 mark Take: $\Lambda = 0, A_1 = \cos(\frac{\pi}{2\sqrt{2}}), \pi = 2\sqrt{2}\cos(A_1 = 2.26)$ each to get the other 2. n = 1 $A_1 = \frac{2\pi}{3} + \cos^{-1}\left(\frac{-1}{2\pi}\right), n = 2\sqrt{2}\cos A_2 = 2.26017$ $n = 2, A_3 = \frac{4\pi}{3} + \cos(\frac{4\pi}{3}), \quad n = 2\sqrt{2}\cos A_3 = 0.3398$ n = 2.2618, n = -2.6017, n = 0.3399

MATHEMATICS EXTENSION 2 - QUESTION 14 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS c) Alternative solution to cli) Using De Moivre's Theorem For (cos A + isin A)³ = cos 3A + isin 3A LHS = $\cos^3 A + 3\cos^2 A i \sin A + 3\cos A i^2 \sin^2 A$ $+1^{3}$ sin³A = cos³A + 3cosAsinAi - 3cosAsin²A - isin³A Equating Real Parts $\cos 3A = \cos^3 A - 3\cos A \sin^2 A$ $= \cos^{3}A - 3\cos A \left(1 - \cos^{2}A\right)$ $= \cos^3 A - 3\cos A + 3\cos^2 A$ $= 4 \cos^{3} A - 3 \cos A$ $\frac{1}{4}\cos 3A = \cos^3 A - \frac{3}{4}\cos A$

MATHEMATICS EXTENSION 2 – QUESTION 15			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
a) Let $t = \tan \frac{9}{2}$			
a) Let $t = ton \frac{Q}{2}$ $\frac{dt}{dt} = \frac{1}{2} \sec^2 \frac{Q}{2}$	-		
	1 - La	20	
= 1+ton2 (since set0=	1 (1)21	20)	
<u> </u>			
2		This is a "show"	
d0 = 2 $dt = \frac{1}{1+2}$		guestion - don't	
1 ± 10^{-1}		question - don't take shortcuts. Show how you Obtain every	
$d0 = 2 dt$ $\overline{1 + t^2}$		show how you	
1462		Obtain every	
OP 110	-	result. V	
$= \frac{t - t - \frac{2}{2}}{t - \frac{1}{2}}$			
$0 = 2 \tan^{-1} t$		Lille plates	
$d\theta_{2}$		When doing integration by	
$\frac{db}{dt} = \frac{2}{1+t^2}$		substitution.	
$d\theta = 2dt$		never mix verial	
1+62		Your integral	
when 0=0, t=ton?		Your integral should progress from one wholl	
20		from one wholl	
when $Q = \overline{Z}$, $t = \tan \overline{Z}$		in terms of Q	
2		to one wholly in terms of t.	
=ton E		in terms of 5.	
= 73			
$\frac{1}{1} \int_{1}^{\frac{1}{2}} \sec(\theta d\theta) = \int_{1}^{\frac{1}{2}} \cos(\theta d\theta)$			
$\frac{1}{2}$ secodo = $\frac{1}{2050}$ do			
″J)			
$= \left(\frac{\sqrt{3}}{1+b^2} \right) 2dt$		· · ·	
$\frac{1}{1-t^2}$ $\frac{1}{1+t^2}$	· ·		
0			

MATHEMATICS EXTENSION 2 – QUESTION 15			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
$= \int_{1-t^2}^{t} \frac{2}{1-t^2} dt$ $Lef = \frac{2}{1-t} = \frac{2}{1-t} + \frac{b}{1+t}$ $= \int_{1-t^2}^{t} \frac{2}{1-t^2} dt$	· · · ·		
$2 = \alpha(1+b) + b(1-t)$]		
~hent=1, 2==2			
:.a=1 when t=-1, 2 = 2b			
$\frac{b=1}{b}$			
$= \int_{1+t}^{\sqrt{3}} \frac{1}{1+t} + \frac{1}{1-t} dt$			
$= \left[ln \left 1+t \right - ln \left 1-t \right]_{0}^{0}$			
$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$			
$= l_{n} \left(\frac{1 + \frac{1}{3}}{1 - \frac{1}{3}} \right)$			
$= l_n \left(\frac{\sqrt{3} + 1}{\sqrt{3} - 1} \right)$			
$= l_{n} \left(\frac{\sqrt{3} + 1}{\sqrt{3} - 1} \right)$ = l_{n} $\left(\sqrt{3} + 1 \right) \left(\sqrt{3} + 1 \right)$ $\left(\sqrt{3} - 1 \right) \left(\sqrt{3} + 1 \right)$			
$= l_{n}(\frac{4+2\sqrt{3}}{3-1})$	1	for full solution	
= ln(2+53)			

MATHEMATICS EXTENSION 2 – QUESTION 15 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS $I_n = \int_{-1}^{1} (1 - l_n x) dx, n = 0, 1, 2...$ let $u = (1 - lnx)^n$ $\therefore u' = -\frac{1}{2} \cdot n(1 - lnx)^{n-1}$ let v'=1 . V=X $:: I_n = [x_{(1-l_nx)}] - [x_{\cdot} - \frac{1}{x} \cdot n(1-l_nx)] dx 2$ = e(1-1)-i(1-0) +n (1-lnx) dz = - + + In-1 +3I, = -1 + 3(-1 + 2I)+3(-1+2(-1+Io 1+3(-1+2(-1+(e-1)))= ~ +3(-1+2(-1+e +3(-1+2[e-2] ~ ~ Ξ =-1+3(-1+2e-4 =-1+3(2e-5)=-1+6e-15 = 6e - 162 marks for full solution mark for significant progress towards solution

MATHEMATICS EXTENSION 2 – QUESTION 15 MARKS MARKER'S COMMENTS SUGGESTED SOLUTIONS 9x2 -16y2 =144 c) i $a^{2}=16$ $b^{2}=9$ a=4 b=3 $\frac{1}{9} = \frac{9^2}{16} \left(\frac{e^2 - 1}{e^2 - 1} \right)$ $\frac{9}{16} = \frac{16}{25} \left(\frac{e^2 - 1}{16} \right)$ $\frac{9}{16} = \frac{25}{16}$ ery b2 5 e>0 Focil (±4× the o 5' 5,0) (-5,0 x² 16 ĩ 2x _ 2y dy dx $\frac{dy}{dx} = \frac{2x}{16} \frac{9}{2y}$ $= \frac{9x}{16y}$ $M_{-} = Q_{x}$ at P(x,16-1 .: equad of tangent to H at P ion $\frac{y_{1} = 9x_{1}}{16y_{1}} \left(x - x_{1} \right)$ - 16y_{2} = 9x -164. 164 -9x,2

MATHEMATICS EXTENSION 2 – QUESTION 15 MARKS **MARKER'S COMMENTS** SUGGESTED SOLUTIONS $\frac{.9x_{,x} - 16y_{,y}}{= 144} = \frac{9x^2 - 16y_{,2}}{(since P(x_{,y}))}$. 9x,x-16y,y=144 <u>ili when y=0</u> $\frac{9x, x - 16y, (o) = 144}{x = 144}$ $\frac{9x}{-16}$ $\frac{2}{-16}$ $: G\left(\frac{16}{5}, 0\right)$ p(r.,y.) ìV $9_{32}^2 - 16_{y2} = 144$ = $y^2 = 9x^2 - 144$ 5(5,0) \$(-50) $G(\frac{16}{2},0)$ $\frac{5p^{2}}{=} (x, -5)^{2} + (y, -0)^{2}$ $= x,^{2} - 10x, +25 + y,^{2}$ $= x,^{2} - 10x, +25 + 9x,^{2} - 144 \quad (Since P(x, y)) \text{ lies on } H)$ $\frac{12}{12}$ $= \frac{16x^{2} - 160x + 400 + 9z^{2} - 144}{16}$ = $25x^{2} - 160x - 256$

MATHEMATICS EXTENSION 2 – QUESTION 15 MARKS SUGGESTED SOLUTIONS MARKER'S COMMENTS $\frac{(5_{x}-16)^2}{4^2}$ $\frac{1.5p}{4} = \frac{5x, -16}{4}$ $\frac{S'\rho^2}{2} = (x, -5)^2 + (y, -0)^2$ = $x,^2 + 10x, +25 + y,^2$ $= x_{,}^{-} + 10x_{,} + 25 + 9x_{,}^{2}$ $= x_{,}^{2} + 10x_{,} + 25 + 9x_{,}^{2} - 144$ $= \frac{16}{16}$ $= \frac{16x_{,}^{2} + 160x_{,} + 400 + 9x_{,}^{2} - 1444}{16}$ $= \frac{16}{16}$ $= \frac{25x_{,}^{2} + 160x_{,} - 256}{16}$ $= \frac{16}{4^{2}}$. for ong other distance (i.e. S'P, SG or S'G $\therefore S'P = 5x, +16$ 4 (5x,-16)/4 SP = (5x, -16)(5x,+16) $54 = 5 - \frac{16}{x_1}$ <u>5x, -16</u> $\frac{5'G = 5 + \frac{16}{3}}{= \frac{5x}{16}}$ = $\frac{5x}{16} + \frac{16}{3}$ $\frac{5x}{16} - \frac{5x}{16} - \frac{16}{12} - \frac{16}{12}$ full solution $= \frac{5x, -16}{5x, +16}$ $= \frac{51}{5p}$

MATHEMATICS EXTENSION 2 – QUESTION 15 MARKS **MARKER'S COMMENTS** SUGGESTED SOLUTIONS P(x,,Y,) M 5(5,0) 25-16 5 directrix has equation == Let M be the the foot of the perpendicular from the directrix to : M (1/2, y.) From the definition of a hyperbolg: SP=ePM 16 $=\frac{5}{2}/x, -$ Sx, -16 $\frac{5x, -16}{4}$ S'P=ePM Similarly ==== (22, --== =) 4 5x, +16 7 Then as above.

MATHEMATICS EXTENSION 2 - QUESTION 16			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
a) i)			
mn' = -mg - R			
$\frac{1}{mg} = -mg - mgV^2$			
<u>a²</u>)		
$\pi' = -g - gv^2$			
a^2 but $\ddot{x} = v. dv$ dx			
<u>^ 2</u>	2		
$\frac{v.dv}{dx} = -g\left(\frac{1+v}{2}\right)$	1		
$= -g\left(\frac{a^2+v^2}{a^2}\right)$			
$= -g \left(a^2 + v^2 \right)$			
$\frac{1}{a^2}$			
ii) $dv = -q (a^2 + v^2)$			
$\frac{1}{dx}$ $\frac{1}{a^2}$ $\frac{1}{v}$			
$\frac{dx}{dx} = -\frac{a^2}{\sqrt{v}}$	1/2		
$dv g \left(a^2 + v^2 \right)$			
$\frac{x = -a^2}{g} \int \frac{v}{a^2 + v^2} dv$			
$\int \int a^{-+}v^{-}$	1/2	48 h/m/m/m/m/m/m/m/m/m/m/m/m/m/m/m/m/m/m/m	
$= -\frac{\alpha^2}{2g} \ln \left[\frac{\alpha^2 + v^2}{2} \right] + c$			
$O = -\alpha^2 \ln (\alpha^2 + U^2) + 1$		999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1	
$O = -\frac{a^2}{2g} \ln \left(a^2 + U^2 \right) + c$			
$C = \frac{a^2}{2q} \ln \left(\frac{a^2 + u^2}{u^2} \right)$			
Zg		• • • • • • • • • • • • • • • • • • •	
$\frac{\pi = -a^{2} \ln(a^{2} + v^{2}) + a^{2} \ln(a^{2} + u^{2})}{2g}$) 2		
2g $2g$ $2g$	51		
$= \frac{a^2}{2g} \ln \left[\frac{a^2 + u^2}{a^2 + v^2} \right] $ For greatest height $\cdot v =$			
$\frac{1}{2 \ln \alpha^2} = \alpha^2 \ln \left[\alpha^2 + U^2 \right]$			
$2l_{mAX} = \frac{a^2}{2g} ln \left[\frac{a^2 + U^2}{a^2} \right]$		6	
$= \frac{a^2}{zg} \ln \left[1 + \frac{u^2}{a^2} \right]$			

.

.

MATHEMATICS EXTENSION 2 – QUESTION 16			
SUGGESTED SOLUTIONS		MARKS	MARKER'S COMMENTS
b) B	y Q		
	and the second se		
	A P		
	0 ×n		
	B	1	
The equation of	the tangent at P	`	
br cos Q + ays	$\sin \theta = ab = 0$		
Sub y=b in ()	to obtain a coord of Q.	1	
$bx \cos\theta + ab \sin\theta - ab = 0$			
$bx \cos \theta = ab - ab \sin \theta$			9009390931119390111990014900490019101111111111
x = ab(1 - sin 0)			
K cos O			
$= a(1 - sin\theta)$		1/2	
(050			
BQ = a(1-sm0)		1/2	
دەيھ			
Sub y=-b in (1) to ob			
bxcos0 - absin0 - ab=0			
x = ab(1+sin0) K cos0			
$\chi = \alpha(1 + \sin \theta)$		i.	
		1/2	
BQ = a(1+smQ)		- ¹ / _L	
(a co) (a co) (a co)			
$N_{OW} - BQ \times BQ' = a(i - sin Q) \times a(i + sin Q)$		1	<u>Manada ana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin</u>
			· · · · · · · · · · · · · · · · · · ·
$=a^2\left(1-\sin^2\theta\right)$		7	
$\frac{\cos^2 \theta}{\cos^2 \theta}$		1	
<u> </u>		Þ	(A)
$= a^{2}$			(T)

MATHEMATICS EXTENSION 2 - QUESTION 16 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS Initial Velocities C 9 n = U cos O Ux (a,b) y=Usin0 2 marks for fully deriving Vertical Component Horizontal Component x = 0 the vertical and <u>y = -g</u> $\chi^2 = C_3$ horizontal equations $\dot{y} = -gt + c$ When t=0, $\dot{y} = Usin\theta$ of motion when += , in = (coso $x' = U\cos\theta$ $Usin\theta = 0 + c$ 1 mark for only stating them. $i - y = -gt + Usin \Theta$ $x = U + \cos \theta + C_{\mu}$ $y = -\frac{gt^2}{2} + \frac{Ut\sin\theta + c}{\cos\theta} \quad \text{when } x = 0, t = 0$ 0==0+(+ when t=0, y=06420 n = Utcoso 0 = 0 + 0 + (2 : 2 = 0) $t = \frac{\pi}{U \cos A} - 3 2$ $y = -\frac{1}{2}gt^2 + Utsm0$ sub (3) in (1) $y = -\frac{i}{2}g\left(\frac{\pi}{1000}\right)^2 + U\left(\frac{\pi}{10000}\right) \sin \theta$ 1 $= -\frac{1}{2} \frac{d}{d^2 \cos^2 \theta} + \frac{x \sin \theta}{\cos \theta}$ $y = -\frac{1}{2}g \frac{x^2}{u^2} \sec^2\theta + x \tan \theta$

MATHEMATICS EXTENSION 2 – QUESTION $|_{6}$ SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS c) ii) From (4) $= -\frac{g}{2ll^2} \pi^2 (1 + \tan^2 \theta) + \pi \tan \theta$ when x=a, y=b sub in (5 $b = -9 a^2 (1 + \tan^2 \theta) + a + \tan \theta$ $2u^2$ $b = -ga^{2} - ga^{2} + an^{2}\theta + a + an\theta$ $\frac{ga^2}{2u^2} + \frac{a^2\theta}{2u^2} - \frac{a}{2u^2} + \frac{ga^2}{2u^2} + \frac{b}{2u^2} = 0$ $ga^2 + an^2\theta - 2U^2a + an\theta + ga^2 + 2U^2b = 0$ Quad Equation in tan 0 For 2 distinct points, A>0 b2 - 4ac > 0 $(-2U^2a)^2 - 4(ga^2)(ga^2 + 2U^2b)>0$ $4 u^4 a^2 - 4 (g^2 a^4 + 2g a^2 b u^2) > 0$ $\frac{4 U^{4}a^{2} - 8ga^{2}bU^{2} - 4g^{2}a^{4} > 0}{\frac{9}{4}a^{2} u^{4} - 2gbU^{2} - g^{2}a^{2} > 0}$ u⁴-2gbu² >g²a² By Completing the square on LHS $u^4 - 2gbu^2 + g^2b^2 > g^2a^2 + g^2b^2$)1 $(u^2 - gb)^2 > g^2(a^2 + b^2)$