St George Girls High School

Trial Higher School Certificate Examination

2018

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided
- In Questions $11-16$, show relevant mathematical reasoning and/or calculations

Section I	$/ 10$
Section II	
Question 11	$/ 15$
Question 12	$/ 15$
Question 13	$/ 15$
Question 14	$/ 15$
Question 15	$/ 15$
Question 16	$/ 15$
Total	$/ \mathbf{1 0 0}$

Section I

Pages 2-6
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section
- Answer on the multiple choice answer sheet provided at the back of this paper

Section II

Pages 7 - 16

90 marks

- Attempt Questions 11 - 16
- Allow about 2 hours and 45 minutes for this section
- Begin each question in a new writing booklet

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1. Find $\int \frac{1}{x^{2}+6 x+13} d x$
(A) $\sin ^{-1}\left(\frac{x+3}{2}\right)+c$
(B) $\frac{1}{2} \cos ^{-1}(x+3)+c$
(C) $2 \tan ^{-1}\left(\frac{x+3}{2}\right)+c$
(D) $\frac{1}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+c$
2. The polynomial $P(x)=x^{3}+x-3$ has roots α, β and γ.

What is the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$?
(A) $\frac{1}{3}$
(B) $-\frac{1}{3}$
(C) 0
(D) 3
3. If $=\frac{\sqrt{3} i+1}{i}$, find \bar{z} in modulus-argument form?
(A) $2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
(B) $2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
(C) $4\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
(D) $4\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)$

Section I (cont'd)

4. The diagram below shows the graph of the function $y=f(x)$.

A second graph is obtained from the function $y=f(x)$.

Which equation best represents the second graph?
(A) $y=[f(x)]^{2}$
(B) $y=f(|x|)$
(C) $y=|f(x)|$
(D) $\quad y=\mid f(|x| \mid$.
5. It is given that $\mathrm{z}=-1+2 i$ is a root of $\mathrm{z}^{3}+4 \mathrm{z}^{2}+9 \mathrm{z}+\mathrm{b}=0$, where b is a real number.

What is the value of b ?
(A) -10
(B) $\quad-12$
(C) 10
(D) 15

Section I (cont'd)

6. The region bounded by the curve $y=\sqrt{2-x}$, the x axis and the y axis is rotated about the line $\mathrm{x}=2$ to form a solid.

Which one of these expressions represents the volume of the solid?
(A) $\pi \int_{0}^{\sqrt{2}}\left(2^{2}-y^{4}\right) d y$
(B) $\pi \int_{0}^{\sqrt{2}}\left(2^{2}-y^{2}\right) d y$
(C) $\pi \int_{0}^{\sqrt{2}}\left(2-y^{2}\right)^{2} d y$
(D) $\pi \int_{0}^{\sqrt{2}}(2-y)^{2} d y$
7. Consider the ellipse with the equation $\frac{x^{2}}{9}+y^{2}=1$.

What are the coordinates of the foci of the ellipse?
(A) $(\pm 6 \sqrt{2}), 0)$
(B) $(0, \pm 6 \sqrt{2}))$
(C) $(0, \pm 2 \sqrt{2})$
(D) $(\pm 2 \sqrt{2}), 0)$
8. Consider the square slices in the right square pyramid below

Find an expression for x in terms of s, h and y.
(A) $x=\frac{s(h+y)}{h}$
(B) $x=\frac{s(y-h)}{h}$
(C) $x=\frac{s(h-y)}{h}$
(D) $x=\frac{h(h-y)}{s}$

Section I (cont'd)

9. A rock of mass m falls vertically from rest at the top of a cliff in a medium whose air resistance is proportional to the velocity of the rock. If the rock falls to ground level under the influence of g, the acceleration due to gravity, which of the following is the correct expression for the velocity of the rock, given that downwards is taken to be the positive direction?
(A) $\quad v=\frac{g}{k}\left(1+e^{-k t}\right)$
(B) $\quad v=\frac{g}{k}\left(1-e^{-k t}\right)$
(C) $\quad v=\frac{g}{k}\left(e^{-k t}+1\right)$
(D) $\quad v=\frac{g}{k}\left(e^{-k t}-1\right)$
10. A particle is projected with a speed of $20 \mathrm{~m} / \mathrm{s}$ and passes through a point P whose horizontal distance from the point of projection is 30 m and whose vertical height above the point of projection is 8.75 m . What is the angle of projection? (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$).
(A) $\tan ^{-1}\left(\frac{2}{3}\right)$
(B) $\tan ^{-1}\left(\frac{3}{2}\right)$
(C) $\tan ^{-1}\left(\frac{3}{4}\right)$
(D) $\tan ^{-1}\left(\frac{4}{3}\right)$

Section II

90 marks

Attempt Questions 11 - 16
Allow about 2 hours 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) z is a complex number such that $|z|=2$ and $\arg z=\frac{\pi}{3}$.
(i) Evaluate z^{5}.
(ii) Write down z in cartesian form.
(iii) Find the value of $\frac{1}{z}$ in cartesian form.
(iv) If $\omega=2-3 i$, find the value of $\omega^{2} z$.
(b) Find
(i) $\int \frac{x}{1+x^{4}} d x$.
(ii) $\int \tan ^{3} x d x$.
(c) By considering the complex number $z=x+i y$ in the Argand plane and on separate Argand diagrams,
(i) sketch the region of the complex plane for which the complex number $z=x+$ iy has a positive real part and $|z+3 i| \leq 2$.
(ii) sketch the locus of $\arg \bar{Z}=\frac{\pi}{3}$.
(d) Find the equation of the normal to the curve $x^{2}-x y+y^{3}=1$ at the point $P(1,1)$ to the curve.

Question 12 (15 marks) Use a SEPARATE writing booklet
(a) Let $Q(x)$ be a polynomial.
$Q(x)=p x^{3}+2 x^{2}+q x-4$, where p and q are real numbers. Find the values of p and q given that $(x+1)^{2}$ is a factor of $Q(x)$.
(b) (i) Find the values of a, b, and c such that:

$$
\begin{equation*}
\frac{x+1}{(x+3)(x+2)^{2}}=\frac{a}{(x+3)}+\frac{b}{(x+2)}+\frac{c}{(x+2)^{2}} \tag{3}
\end{equation*}
$$

(ii) Hence find $\int \frac{x+1}{(x+3)(x+2)^{2}} d x$.
(c) Let S be the solid having its base the region bounded by the curve $x^{2}+y^{2}=16$.

Every plane of the solid taken perpendicular to the x-axis is an isosceles rightangled triangle with the hypotenuse in the plane of the base.

Find the volume of the solid S.
(d)

In the diagram above, $O A B C$ is a parallelogram with $O A=\frac{1}{2} O C$.
The point A represents the complex number $-\frac{1}{2}+i \frac{\sqrt{3}}{2}$.
If $\angle A O C=\frac{\pi}{3}$, what complex number does C represent?

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a)

The graph of $y=f(x)$ is shown above.
Draw separate one-third page sketches of these functions. Indicate clearly any asymptotes and intercepts with the axes.
(i) $\quad y=|f(x)|$
(ii) $\quad y=\{f(x)\}^{3}$
(iii) $y^{2}=f(x)$
(iv) $y=f(1-x)$
(b) Solve the polynomial equation $x^{4}-6 x^{3}+9 x^{2}+4 x-12=0$, given that the equation has a double root.
(c) The region bounded by the parabola $y=4 x(3-x)$ and the x-axis is rotated about the y-axis to form a solid.
Use the method of cylindrical shells to find the volume of the solid.
(d) The equation $x^{3}-5 x-2=0$ has roots α, β and γ.

Find the equation with integer coefficients that has roots $\alpha+1, \beta+1$ and $\gamma+1$.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) The points $P\left(2 p, \frac{2}{p}\right), p \neq 0$, and $Q\left(2 q, \frac{2}{q}\right), q \neq 0$, are two points on the rectangular hyperbola $x y=4$.
(i) Show that the equation of the chord $P Q$ is $x+p q y=2(p+q)$.
(ii) Prove that the tangent at P has equation $x+p^{2} y=4 p$.
(iii) The tangents at P and Q intersect at T. Find the coordinates of T.
(iv) The line through T, parallel to $P Q$ passes through the point $(0,2)$. Show that $p+q=4$.
(b) Find $\int \frac{\ln x}{x^{2}} d x$
(c) (i) Prove the identity $\frac{1}{4} \cos 3 A=\cos ^{3} A-\frac{3}{4} \cos A$.
(ii) Show that $\cos 3 A=\frac{-1}{2 \sqrt{2}}$, given that $x=2 \sqrt{2} \cos A$ satisfies the cubic equation $x^{3}-6 x+2=0$.
(iii) What are the three roots of the equation $x^{3}-6 x+2=0$?

Answer correct to four decimal places.

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) By using the substitution $t=\tan \frac{\theta}{2}$, show that $\int_{0}^{\frac{\pi}{3}} \sec \theta d \theta=\ln (2+\sqrt{3})$.
(b) $\quad I_{n}=\int_{1}^{\mathrm{e}}(1-\ln x)^{n} d x, \quad \mathrm{n}=0,1,2,3, \ldots$
(i) Show $I_{n}=-1+n I_{n-1}, \quad n=1,2,3, \ldots$
(ii) Hence evaluate I_{3}.
(c) The Hyperbola H has equation $9 x^{2}-16 y^{2}=144$.
(i) Write down the eccentricity for this hyperbola and find the coordinates of its foci S and S^{\prime}.
(ii) If $P\left(x_{1}, y_{1}\right)$ is an arbitrary point on H, prove that the equation of the tangent T at P is: $9 x x_{1}-16 y y_{1}=144$.
(iii) Hence find the coordinates of the point G at which the tangent T cuts the x-axis.
(iv) Hence show that $S P=\frac{5 x_{1}-16}{4}$ and that $\frac{S P}{S^{\prime} P}=\frac{S G}{S^{\prime} G}$.

Question 16 (15 marks) Use a SEPARATE writing booklet.
a) (i) A particle of mass m is projected vertically upwards under gravity g, the air resistance to the motion being $\frac{m g v^{2}}{a^{2}}$ when the speed is v, where a is a constant.

Show that during the upward motion of the particle

$$
v \frac{d v}{d x}=-\frac{g}{a^{2}}\left(a^{2}+v^{2}\right)
$$

where x is the upward motion of the particle.
(ii) Show that the greatest height reached, given the speed of the projection u, is

$$
\frac{a^{2}}{2 g} \ln \left(1+\frac{u^{2}}{a^{2}}\right)
$$

b) In the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad(a>b), B$ and B^{\prime} are two points where the ellipse cuts the y - axis. The tangents at B and B^{\prime} to the ellipse intersect the tangent at P in Q and Q^{\prime} respectively. Let P be the point $(a \cos \theta, b \sin \theta)$.

Draw a diagram to represent this information.
If the equation of the tangent at P is $b x \cos \theta+a y \sin \theta-a b=0$, show that $B Q \times B^{\prime} Q^{\prime}=a^{2}$.
(c) A particle is projected, with an angle of θ, form the origin with initial velocity U to pass through a point (a, b).
(i) Show that the Cartesian equation of the motion of the particle is given by
$y=\frac{-g x^{2}}{2 U^{2}} \sec ^{2} \theta+x \tan \theta$. You must DERIVE all equations of motion.
(ii) Prove that there are two possible trajectories if:

$$
\left(U^{2}-g b\right)^{2}>g^{2}\left(a^{2}+b^{2}\right)
$$

SUGGESTED SOLUTIONS | 1. $\int \frac{1}{x^{2}+6 x+13} d x$ | $=\int \frac{1}{x^{2}+6 x+9+13-9} d x$ |
| ---: | :--- |
| | $=\int \frac{1}{(x+3)^{2}+4} d x$ |
| | $\left.=\frac{1}{2} \tan ^{-1} \frac{(x+3}{2}\right)+c$ |

2.

$$
\begin{aligned}
& P(x)=x^{3}+x-3 \\
& \alpha+\beta+\gamma=0 \\
& \alpha \beta \gamma=3 \\
& \alpha \beta+\beta+\alpha \gamma=1 \\
& \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\beta \gamma+\alpha \gamma+\alpha \beta \\
& =\frac{1}{\alpha \beta \gamma}
\end{aligned}
$$

3.

$$
\text { 3. } \begin{aligned}
& z=\frac{\sqrt{3} i+1}{i} \times \frac{i}{i} \\
&=-\sqrt{3}+i \\
&-1 \\
&=\sqrt{3}-i \\
& \bar{z}=\sqrt{3}+i \\
&|\bar{z}|=\sqrt{(\sqrt{3})^{2}+(1)^{2}} \\
&=\sqrt{4}=2 \\
& \begin{aligned}
\arg \bar{z} & =\tan ^{-1} \frac{1}{\sqrt{3}} \\
& =\pi / 6 \quad \therefore \quad \bar{z}=2 \cos \pi / 6
\end{aligned}
\end{aligned}
$$

4. The portion where $x \geqslant 0$ has been reflected about the y-axis So $g(x)=g(-x)$

MATHEMATICS EXTENSION 2 - QUESTION

SUGGESTED SOLUTIONS
5 . $z=-1+2 i$ is a root of $P(z)$
$\bar{z}=-1-2 i$ is also a root

So $\alpha=-1+2 i, \beta=-1-2 i$ and γ are 3 roots.
Sum of rots: $\alpha+\beta+\delta=-4$

$$
\begin{aligned}
-1+2 i-1-2 i+\gamma & =-4 \\
-2+\gamma & =-4 \\
\gamma & =-2
\end{aligned}
$$

Product of roots: $(-1+2 i)(-1-2 i)-2=-6$

$$
\begin{aligned}
(1+4) \times-2 & =-b \\
b & =101
\end{aligned}
$$

6.

$$
\begin{aligned}
& =\pi\left(r_{2}^{2}-r_{1}^{2}\right) \\
& =\pi\left(2^{2}-(2-x)^{2}\right) \\
& =\pi\left(2^{2}=\left(y^{2}\right)^{2}\right)
\end{aligned}
$$

$$
V=\int_{0}^{\sqrt{2}} \pi\left(z^{2}-y^{4}\right) d y
$$

7. $\frac{x^{2}}{9}+y=1 \quad$ Using $b^{2}=a^{2}\left(1-e^{2}\right)$

$$
\begin{gathered}
1=9\left(1-e^{2}\right) \\
\frac{1}{9}=1-e^{2} \\
e^{2}=1-1 / 9=8 / 9 \\
e=\frac{2 \sqrt{2}}{3} \\
\text { Foci }=(\pm a e, 0) \\
=\left(\pm 3 \times \frac{2 \sqrt{2}}{3}, 0\right) \\
=(\pm 2 \sqrt{2}, 0)
\end{gathered}
$$

MATHEMATICS EXTENSION 2 - QUESTION

MATHEMATICS EXTENSION 2-QUESTION Multiple Choice

MATHEMATICS EXTENSION 2 - QUESTION 11

MATHEMATICS EXTENSION 2 - QUESTION 11

MATHEMATICS EXTENSION 2 - QUESTION 11

d) $x^{2}-x y+y^{3}=1$

Differentiating implicitly,

$$
\begin{array}{r}
2 x-\left(y+x \frac{d y}{d x}\right)+3 y^{2} \frac{d y}{d x}=0 \\
3 y^{2} \frac{d y}{d x}-\frac{x d y}{d x}=y-2 x \\
\frac{d y}{d x}=\frac{y-2 x}{3 y^{2}-x}
\end{array}
$$

At $P(1,1)$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1-2}{3-1} \\
& =-\frac{1}{2}
\end{aligned}
$$

\therefore gradient of tangent is $-\frac{1}{2}$
\therefore gradient of normal is 2
Equation of normal

$$
\begin{aligned}
y-1 & =2(x-1) \\
y & =2 x-2+1 \\
\therefore y & =2 x-1
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION 12

MATHEMATICS EXTENSION 2 - QUESTION 12

ii)

$$
\begin{aligned}
I^{\prime} & =\int \frac{x+1}{(x+3)(x+2)^{2}} d x \\
& =\int \frac{-2}{x+3} d x+\int \frac{2}{x+2} d x-\int \frac{d x}{(x+2)^{2}} \\
& =-2 \ln |x+3|+2 \ln |x+2|-\int(x+2)^{-2} d x \\
& =2[\ln |x+2|-\ln |x+3|]-\frac{(x+2)^{-1}}{-1}+c \\
& =2 \ln \left|\frac{x+2}{x+3}\right|+\frac{1}{x+2}+c
\end{aligned} 1
$$

MATHEMATICS EXTENSION 2 -QUESTION 12
SUGGESTED SOLUTIONS
c) Area of right-angled isosceles triangle:

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2} s^{2}
\end{aligned}
$$

Using Pythagoras theorem:

$$
\begin{align*}
s^{2}+s^{2} & =(2 y)^{2} \\
2 s^{2} & =4 y^{2} \\
\frac{s^{2}}{2} & =y^{2} \tag{2}
\end{align*}
$$

$$
\begin{align*}
x^{2}+y^{2} & =16 \\
y^{2} & =16-x^{2} \tag{3}
\end{align*}
$$

but
sub (2) in (3)

$$
\begin{aligned}
& \frac{5^{2}}{S^{2}}=16-x^{2} \\
& A=\frac{1}{2}\left[2\left(16-x^{2}\right) \text { sub in }(16)\right. \\
& \left.\left.=16-x^{2}\right)\right] \\
& \delta V=\left(\frac{\left.16-x^{2}\right) \delta x}{4}\left(16-x^{2}\right) \delta x\right. \\
& V=\lim _{\delta x \rightarrow 0}^{4}\left(16-x^{2} d x\right. \\
& V=\int_{-4}^{4} 16-x^{4} 16-x^{2} d x \\
& \left.=2 \times \int_{0}^{4} 16 x-\frac{x^{3}}{3}\right]_{0}^{4} \\
& =2[16 \\
& =2\left(\left[16 \times 4-\frac{(4)^{3}}{3}\right]-0\right) \\
& =
\end{aligned}
$$

Care needs to be taken when finding the area of the right angled isosceles triangle wit x

MATHEMATICS EXTENSION 2 -QUESTION 12

MATHEMATICS EXTENSION 2 -QUESTION 12

MATHEMATICS EXTENSION 2 - QUESTION 13

MATHEMATICS EXTENSION 2 - QUESTION 13

Note: part marks could be earned by building up your onsver with a series of simpler transformation. eg. sketching $y=f(-x)$ was helpful.

MATHEMATICS EXTENSION 2 - QUESTION 13

\therefore the solutions of $x^{4}-6 x^{3}+9 x^{2}+4 x-12=0$ are $x=-1, x=2, x=3$

Note that this question asked for a solution. Factorising was useful, but not enough to eam full marks.

MATHEMATICS EXTENSION 2 - QUESTION 13

MATHEMATICS EXTENSION 2 - QUESTION 13
SUGGESTED SOLUTIONS

- MARKS

MARKERS COMMENTS
d) If $x^{3}-5 x-2=0$

Let $x=y+1$

$$
\therefore y=x-1
$$

sub $x-1$ into (1)

$$
\begin{gathered}
(x-1)^{3}-5(x-1)-2=0 \\
x^{3}-3 x^{2}+3 x-1-5 x+5-2=0 \\
x^{3}-3 x^{2}-2 x+2=0
\end{gathered}
$$

Note that this question requested on equation Giving a function (e.g. $P(x)=x^{3}-3 x^{2}-2 x+2$) as your answer does not answer the question.

MATHEMATICS EXTENSION 2 - QUESTION 14
SUGGESTED SOLUTIONS

Gradient of $P Q: \quad m_{P_{Q}}=\frac{\frac{2}{p}-\frac{2}{q}}{2 p-2 q}$

$$
\begin{aligned}
& =\frac{\frac{2 q-2 p}{p q}}{2 p-2 q} \\
& =\frac{2 q-2 p}{p q} \times \frac{1}{2(p-q)} \\
& =-\frac{z(p+q)}{p q} \times \frac{1}{2^{\prime}(p-q)} \\
& =-\frac{1}{p q}
\end{aligned}
$$

Equation of chord $P Q$

$$
\left.\begin{array}{rl}
y-\frac{2}{p} & =-\frac{1}{p q}(x-2 p) \\
p q y-2 q & =-x+2 p \\
\therefore x+p q y & =2(p+q)
\end{array}\right\} \frac{1 / 2}{}
$$

ii) For $x y=4$.

Differentiating implicitly ort x

$$
\begin{aligned}
y+x \cdot \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =\frac{-y}{x} \\
& =\frac{-2 p}{-2 / p} \\
& =\frac{-2}{p} \times \frac{1}{2 p} \\
& =\frac{-1}{p^{2}}
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION $/ 4$

$$
\begin{gathered}
\text { SUGGESTED Solutions } \\
\text { a) Cont'd } \\
\text { Equation of tangent: } \\
y-\frac{2}{p}=-\frac{1}{p^{2}}(x-2 p) \\
p^{2} y-2 p=-x+2 p \\
x+p^{2} y=4 p
\end{gathered}
$$

iii) Similarly tangent at Q :

$$
\begin{aligned}
& \text { (i) -(2) }\left(p^{2}-q q^{2}\right) y=4(p-q) \\
&(p-q)(p+q) y=4(p-q) \\
& y=\frac{4}{p+q} \text { sub in } 11
\end{aligned}\left|\begin{array}{l}
\\
x+p^{2}\left(\frac{4}{p+q}\right)=4 p \\
x=4 p-\frac{4 p^{2}}{p+q} \\
\\
=\frac{4 p(p+q)-4 p^{2}}{p+q} \\
\\
=\frac{4 p^{2}+4 p q-4 p^{2}}{p+q} \\
\\
=\frac{4 p q}{p+q} \\
\hline
\end{array}\right| \begin{aligned}
& \\
& \hline \therefore \text { is }\left(\frac{4 p q}{p+q} ; \frac{4}{p+q}\right) \\
& \hline
\end{aligned}
$$

MATHEMATICS EXTENSION 2 -QUESTION 14

$$
\begin{aligned}
& \text { suggested solutions } \\
& \text { (a) iv) Using } T \text { and Gradient of } P Q \text {, } \\
& \text { the line through } T \text {, parallel to } P Q \text { : } \\
& y-\frac{4}{p+q}=-\frac{1}{p q}\left(x-\frac{4 p q}{p+q}\right)
\end{aligned}
$$

Sub $(0,2)$ in this equation

$$
2-\frac{4}{p+q}=-\frac{1}{p q}\left(\frac{-4 p q}{p+q}\right)
$$

$$
\begin{aligned}
2(p+q)-4 & =4 \\
2(p+q) & =8 \\
p+q & =4
\end{aligned}
$$

b) Using integration by pats

$$
\left.\begin{aligned}
& \int \frac{\ln x}{x^{2}} d x=u v-\int v u^{\prime} d x \quad \begin{array}{r}
u=\ln x \quad v^{\prime}=\frac{1}{x^{2}} \\
=x^{-2} \\
u^{\prime}=\frac{1}{x} \\
v=x^{-1} \\
-\frac{1}{x}
\end{array} \\
&=\ln x-\frac{1}{x}-\int-\frac{1}{x} \cdot \frac{1}{x} d x
\end{aligned} \right\rvert\, 1
$$

Some students did not substitute the
1 point T and $(0,2)$ correctly in the equation of a lin., otherwise the
1 question was done quite well.

MATHEMATICS EXTENSION 2 - QUESTION $/ 4$

	SUGGESTED SOLUTIONS	MARKS
c) ${ }^{\prime} \cos 3 A$	$=\cos (2 A+A)$	
	$=\cos 2 A \cos A-\sin 2 A \sin A$	
	$=\left(2 \cos ^{2} A-1\right) \cos A-2 \sin A \cos A \sin A$	1
	$=2 \cos ^{3} A-\cos A-2 \cos A \sin ^{2} A$	
	$=2 \cos ^{3} A-\cos A-2 \cos A\left(1-\cos ^{2} A\right)$	1
	$=2 \cos ^{3} A-\cos A-2 \cos A+2 \cos ^{2} A$	
	$=4 \cos ^{3} A-3 \cos A$	
4		
$\frac{1}{4} \cos 3 A$	$=\cos ^{3} A-\frac{3}{4} \cos A$	(1)

ii) For $x^{3}-6 x+2=0$ (2)
sub $x=2 \sqrt{2} \cos A$ in (2)

$$
\begin{gathered}
(2 \sqrt{2} \cos A)^{3}-6(2 \sqrt{2} \cos A)+2=0 \\
16 \sqrt{2} \cos ^{3} A-12 \sqrt{2} \cos A+2=0 \\
16 \sqrt{2} \cos ^{3} A-12 \sqrt{2} \cos A=-2 \\
\cos ^{3} A-\frac{3}{4} \cos A=\frac{-2}{16 \sqrt{2}} \\
\text { from (1) } \frac{1}{4} \cos 3 A=\frac{-2}{16 \sqrt{2}} \\
\cos 3 A=\frac{-1}{8 \sqrt{2}} \times 4 \\
=\frac{-1}{2 \sqrt{2}}
\end{gathered}
$$

iii) Three roots of $x^{3}-6 x+2=0$ are 3 root of

$$
\begin{aligned}
\cos 3 A & =-\frac{1}{2 \sqrt{2}} \\
3 A & =2 n \pi+\cos ^{-1}\left(\frac{-1}{2 \sqrt{2}}\right) \\
A & =\frac{2 n \pi}{3}+\frac{\cos ^{-1}\left(\frac{-1}{2 \sqrt{2}}\right)}{3}
\end{aligned}
$$

Take:
1 mark to get 1 solution and $1 / 2$ marie each to get the other 2.

$$
\begin{aligned}
& n=0, \quad A_{1} \doteqdot \cos ^{-1} \frac{-1}{2} \frac{\sqrt{2}}{2} \quad \therefore x=2 \sqrt{2} \cos A_{1} \equiv 2.268 \\
& n=1, A_{2}=\frac{2 \pi}{3}+\cos ^{\frac{3}{-1}}\left(\frac{-1}{2 \pi}\right), x=2 \sqrt{2} \cos A_{2} \neq-2.26017 \\
& n=2, A_{3}=\frac{4 \pi}{3}+\frac{\cos ^{-1}\left(\frac{1-\lambda^{3}}{\left(x_{2}\right)}\right.}{3}, \quad x=2 \sqrt{2} \cos A_{3} \doteq 0.3398 \text {. } \\
& \therefore x=2.2618,{ }^{3} x=-2.6017, x=0.3399
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION 14

MATHEMATICS EXTENSION 2 - QUESTION 15

MATHEMATICS EXTENSION 2 - QUESTION 15

$$
\begin{aligned}
& \text { SUGGESTED SOLUTIONS } \\
& \therefore 9 x, x-16 y, y=9 x^{2}-16 y^{2}{ }^{2} \\
&=144\binom{\text { since } p(x, y, y)}{\text { lies on } H} \\
& \therefore 9 x, x-16 y, y=144
\end{aligned}
$$

iii when $y=0$

$$
\begin{aligned}
9 x, x-16 y,(0) & =144 \\
x & =\frac{144}{9 x} \\
& =\frac{16}{x}
\end{aligned}
$$

$$
S p^{2}=(x,-5)^{2}+(y,-0)^{2}
$$

$$
=x_{1}^{2}-10 x_{1}+25+y_{1}^{2}
$$

$$
\begin{aligned}
& =x_{1}-10 x_{1}+25+y_{1}^{2} \\
& =x_{1}^{2}-10 x_{1}+25+\frac{9 x_{1}^{2}-144}{16} \quad\left(\text { since } P\left(x_{1}, y_{1}\right) \text { lies on } H\right)
\end{aligned}
$$

$$
=\frac{16 x_{1}^{2}-160 x_{1}+400+9 x_{1}^{2}-144}{16}
$$

$$
=\frac{25 x_{1}^{2}-160 x-256}{16}
$$

MATHEMATICS EXTENSION 2 - QUESTION 15

MATHEMATICS EXTENSION 2 - QUESTION 15
SUGGESTED SOLUTIONS
directrix has equation $x=\frac{a}{2} \Rightarrow \frac{4}{5 / 4}$

$$
\therefore x=\frac{16}{5}
$$

Let M be the the foot of the perpendicular
from the directrix to ρ

$$
\therefore M\left(\frac{16}{5}, y_{1}\right)
$$

From the definition of a hyperbola:

$$
\begin{aligned}
S P & =e P M \\
& =\frac{5}{4}\left(x,-\frac{16}{5}\right) \\
& =\frac{5}{4}\left(\frac{5 x_{1}-16}{5}\right) \\
& =\frac{5 x_{1}-16}{4}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
S^{\prime} \rho & =e p \text { r } \\
& =\frac{5}{4}\left(x_{1}--\frac{16}{5}\right) \\
& =\frac{5}{4}\left(x_{1}+\frac{16}{5}\right) \\
& =\frac{5}{4}\left(\frac{5 x_{1}+16}{5}\right) \\
& =\frac{5 x_{1}+16}{4}
\end{aligned}
$$

$$
1
$$

Then as above.

MATHEMATICS EXTENSION 2 - QUESTION /6

$$
\begin{aligned}
& \text { SUGGESTED SOLUTIONS } \\
& \text { a) i) } \\
& \begin{aligned}
l_{n g}^{x} \quad m \ddot{x} & =-m g-R \\
& =-m g
\end{aligned} \\
& =-m g-\frac{m g v^{2}}{a^{2}} \\
& x^{\prime \prime}=-g-\frac{g v^{2}}{a^{2}} \\
& \text { but } \ddot{x}=v \cdot \frac{d v}{d x} \\
& \begin{aligned}
v \cdot \frac{d v}{d x} & =-g\left(1+\frac{v^{2}}{a^{2}}\right) \\
& =-g\left(\frac{a^{2}+v^{2}}{a^{2}}\right) \\
& =-g\left(a^{2}+v^{2}\right)
\end{aligned}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{d v}{d x} & =-\frac{9}{a^{2}}\left(\frac{a^{2}+v^{2}}{v^{2}}\right) \\
\frac{d x}{d v} & =-\frac{a^{2}}{g}\left(\frac{v^{\prime}}{a^{2}+v^{2}}\right) \\
x & =-\frac{a^{2}}{g} \int \frac{v}{a^{2}+v^{2}} d v \\
& \left.\left.=-\frac{a^{2}}{2 g} \ln \right\rvert\, a^{2}+v^{2}\right)+c
\end{aligned}
$$

when $t=0, x=0, v=U$

$$
\begin{aligned}
0 & =\frac{-a^{2}}{2 g} \ln \left(a^{2}+u^{2}\right)+c \\
c & =\frac{a^{2}}{2 g} \ln \left(a^{2}+u^{2}\right) \\
x & \left.=-\frac{a^{2}}{2 g} \ln \left(a^{2}+v^{2}\right)+\frac{a^{2}}{2 g} \ln \left(a^{2}+u^{2}\right)\right\} \\
& =\frac{a^{2}}{2 g} \ln \left[\frac{a^{2}+u^{2}}{a^{2}+v^{2}}\right] \quad \text { For greatest } \\
x_{\max } & =\frac{a^{2}}{2 g} \ln \left[\frac{a^{2}+u^{2}}{a^{2}}\right] \quad \text { height } v=0 \quad 1 \\
& =\frac{a^{2}}{2 g} \ln \left[1+\frac{u^{2}}{a^{2}}\right]
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION 16

The equation of the tangent at P

$$
b x \cos \theta+a y \sin \theta-a b=0
$$

Sub $y=b$ in (1) to obtain x cord of Q.

$$
\begin{array}{r}
b x \cos \theta+a b \sin \theta-a b=0 \\
b x \cos \theta=a b-a b \sin \theta \\
x=\frac{a b(1-\sin \theta)}{b \cos \theta} \\
=\frac{a(1-\sin \theta)}{\cos \theta} \\
\therefore B Q=\frac{a(1-\sin \theta)}{\cos \theta}
\end{array}
$$

Sub $y=-b$ in (0) to obtain x-word of Q^{\prime}

$$
\left.\begin{array}{rl}
b x \cos \theta-a b \sin \theta-a b=0 \\
x=\frac{a b(1+\sin \theta)}{\not b \cos \theta} \\
x=\frac{a(1+\sin \theta)}{\cos \theta} & 1 / 1 \\
\therefore B Q^{\prime} & =\frac{a(1+\sin \theta)}{\cos \theta} \\
\text { Now-BQ} \times B Q^{\prime} & =\frac{a(1-\sin \theta)}{\cos \theta} \times \frac{a(1+\sin \theta)}{\cos \theta} \\
& =\frac{a^{2}\left(1-\sin ^{2} \theta\right)}{\cos ^{2} \theta} \\
& =\frac{a^{2} \cos ^{2} \theta}{\cos ^{2} \theta} \\
& =a^{2}
\end{array}\right\}
$$

MATHEMATICS EXTENSION 2 - QUESTION 16

sub (3) in (1)

$$
\begin{aligned}
y & =-\frac{1}{2} g\left(\frac{x}{u \cos \theta}\right)^{2}+u\left(\frac{x}{u \cos \theta}\right) \sin \theta \\
& =-\frac{1}{2} g\left(\frac{x^{2}}{u^{2} \cos ^{2} \theta}\right)+\frac{x \sin \theta}{\cos \theta} \\
y & =-\frac{1}{2} g \frac{x^{2}}{u^{2}} \sec ^{2} \theta+x \tan \theta
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION 16

$$
\begin{align*}
& \text { SUGGESTED SOLUTIONS } \\
& \hline \text { c) ii) } \\
& \text { From (4) } \\
& y=\frac{-9}{2 u^{2}} x^{2}\left(1+\tan ^{2} \theta\right)+x \tan \theta \tag{5}\\
& \hline
\end{align*}
$$

when $x=a, y=b$ sub in (5)

$$
\begin{gathered}
b=\frac{-g}{2 u^{2}} \cdot a^{2}\left(1+\tan ^{2} \theta\right)+a \tan \theta \\
b=\frac{-g a^{2}}{2 u^{2}}-\frac{g a^{2}}{2 u^{2}} \tan ^{2} \theta+a \tan \theta \\
\frac{g a^{2}}{2 u^{2}} \tan ^{2} \theta-a \tan \theta+\frac{g a^{2}}{2 u^{2}}+b=0 \\
g a^{2} \tan ^{2} \theta-2 u^{2} a \tan \theta+g a^{2}+2 u^{2} b=0
\end{gathered}
$$

Quad Equation in $\tan \theta$
For 2 distinct points, $\Delta>0$

$$
\begin{array}{cc|c|}
\hline b^{2}-4 a c>0 & 1 \\
\hline\left(-2 u^{2} a\right)^{2}-4\left(g a^{2}\right)\left(g a^{2}+2 u^{2} b\right)>0 & 1 \\
4 u^{4} a^{2}-4\left(g^{2} a^{4}+2 g a^{2} b u^{2}\right)>0 & \\
\hline 4 u^{4} a^{2}-8 g a^{2} b u^{2}-4 g^{2} a^{4}>0 & \\
\hline-2 g b u^{2}-g^{2} a^{2}>0 & \\
\hline 4 a^{2}-4 g b u^{2}>g^{2} a^{2} & \\
\hline u^{4}-2 g \text { an } 4+1 & \\
\hline \text { By Completing the square on } & \\
\hline u^{4}-2 g b u^{2}+g^{2} b^{2}>g^{2} a^{2}+g^{2} b^{2} & 1 \\
\left(u^{2}-g b\right)^{2}>g^{2}\left(a^{2}+b^{2}\right) &
\end{array}
$$

