

20 SYDNEY BOYS HIGH SCHOOL trial higher school certificate examination

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided with this paper
- Leave your answers in the simplest exact form, unless otherwise stated
- All necessary working should be shown in every question if full marks are to be awarded
- Marks may NOT be awarded for messy or badly arranged work
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100
Section I
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II
 Pages 7-15

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 The complex number $x+i y$, where x and y are real constants, is represented in the following diagram.

Which of the following (drawn to the same scale) could represent the complex number ix-y?
A.

B.

C.

D.

2 Below is the graph of $y=f(x)$.

Which of the following could be the graph of $|y|=\sqrt{f(x)}$?
A.

C.

B.

D.

3 The polynomial $P(x)=2 x^{3}-9 x^{2}+12 x+k$ has a double root.
What are the possible values of k ?
A. $k=4$ or 5
B. $k=-4$ or -5
C. $k=-4$ or 5
D. $k=4$ or -5

4 If ω is a complex cube root of unity of least positive argument, what is the value of $\left(1+\frac{1}{\omega}\right)^{2018}$?
A. $\frac{1}{\omega}$
B. ω
C. 0
D. 1

5 Which of the following is equivalent to $\int_{0}^{\frac{\pi}{2}} \frac{d x}{3-\cos x+\sin x}$ using the substitution $t=\tan \frac{x}{2}$?
A. $\int_{0}^{\frac{\pi}{2}} \frac{d t}{2 t^{2}+t+1}$
B. $\int_{0}^{\frac{\pi}{2}} \frac{2 d t}{4-t^{2}-2 t}$
C. $\int_{0}^{1} \frac{d t}{2 t^{2}+t+1}$
D. $\int_{0}^{1} \frac{2 d t}{4-t^{2}-2 t}$
$6 \quad P(x)=x^{3}-i x^{2}+2 x-1$ has roots α, β and γ. What is the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$?
A. $3+i$
B. $3-7 i$
C. $1+i$
D. $1-7 i$

7 The shaded region bounded by the curve $x=y^{2}$ and the line $x=4$ is rotated about the line $y=4$.

Which of the following gives the expression for the volume of the solid of revolution using the method of cylindrical shells?
A. $2 \pi \int_{-2}^{2} x y d y$
B. $2 \pi \int_{-2}^{2}(4-x)(4-y) d y$
C. $4 \pi \int_{0}^{2} x y d y$
D. $4 \pi \int_{0}^{2}(4-x)(4-y) d y$

8 A horizontal force of P newtons causes a mass of $m \mathrm{~kg}$ moving in a straight line to accelerate. The total resistance to the object's motion is $k v^{2}$ newtons per unit mass, where v is the speed of the object in m / s and k is a positive real constant. What is the equation of motion of the object?
A. $m \frac{d v}{d t}=P-k v^{2}$
B. $\frac{d v}{d t}=P-k v^{2}$
C. $m \frac{d v}{d t}=P-m k v^{2}$
D. $\frac{d v}{d t}=P-m k v^{2}$

9 Caleb has a jar of coins. There are ten coins each of 5 cent, 10 cent, 20 cent and 50 cent denominations. Caleb asks his friend Declan to choose eight coins from the jar. In how many ways can Declan choose the eight coins?
A. 4^{8}
B. ${ }^{40} C_{8}$
C. ${ }^{11} C_{3}$
D. $\quad{ }^{7} C_{3}$
$10 \quad f(x)$ is an even function. Which of the following is not necessarily true?
A. $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(a-x) d x$
B. $\int_{0}^{2 a} f(x) d x=\int_{-2 a}^{0} f(-x) d x$
C. $\quad \int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(a-x) d x+\int_{a}^{2 a} f(2 a-x) d x$
D. $\int_{a}^{2 a} f(x) d x=\int_{0}^{a} f(a+x) d x$

Section II

Total marks - 90

Attempt Questions 11-16
Allow about 2 hour 45 minutes for this section.
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 to 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Write $\frac{5}{2-4 i}$ in the form $x+i y$.
(b) Find the real and imaginary parts of $(i+\sqrt{3})^{5}$.
(c) Points A and B are representations in the complex plane of the numbers $Z=1-i$ and $w=-\sqrt{3}-3 i$ respectively. O is the origin.
(i) Find the size of angle $A O B$, expressing your answer in terms of π.
(ii) Calculate the argument of $z w$, again giving your answer in terms of π.
(d) Consider $f(x)=x^{4}+2 x^{3}+2 x^{2}+26 x+169$.

The equation $f(x)=0$ has a root $x=2-3 i$.
(i) Express $f(x)$ as a product of two real quadratic factors.
(ii) Hence, or otherwise find all the roots of $f(x)=0$.
(e) (i) On a single Argand diagram, sketch the following loci:
$(\alpha) \quad|z-3 i|=2$
$(\beta) \quad \arg (z+1)=\frac{\pi}{4}$
(ii) On your diagram, shade the region where $|z-3 i| \leq 2$ and $\arg (z+1) \leq \frac{\pi}{4}$.
(iii) Indicate on your diagram, the point A on the locus $|z-3 i|=2$ with the least argument and find this minimum argument.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{d x}{\sqrt{2+2 x-x^{2}}}$.
(b) Consider the curve $2 x^{3}+y^{3}=5 y$.
(i) Show that $\frac{d y}{d x}=\frac{6 x^{2}}{5-3 y^{2}}$.
(ii) Find the y-coordinates of the points where the curve has a horizontal tangent.
(c) In the Argand diagram below, the point A represents the complex number z_{1} and the point B represents the complex number z_{2}.
C is chosen such that $\overrightarrow{O A}=\frac{1}{3} \overrightarrow{O C}$ and D is chosen such that $\overrightarrow{C D}=\frac{3}{4} \overrightarrow{C B}$.

Find $\overrightarrow{A D}$ in terms of z_{1} and z_{2} giving your answer in simplest form.
You must show all working.

Question 12 continues on Page 9

Question 12 (continued)
(d) Consider the curve $\mathscr{C}: y=\frac{x^{2}+m x-n}{x+3}$.
(i) Show that if \mathbb{C} has two stationary points, then $n<9-3 m$.
(ii) Sketch the graph of $\overparen{\odot}$ for $m=2$ and $n=1$, clearly showing where the asymptotes intersect the coordinate axes.
You do not need to find the stationary points.
(e) The graph of $y=f(x)$ is shown below.

Draw a neat sketch of the following on the sheet provided
(i) $\quad y=f(|x|)$
(ii) $\quad y=\sin ^{-1}(f(x))$

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) The equation $x^{3}+2 x^{2}+x+3=0$ has roots α, β and γ. Find the values of p, q and r such that $x^{3}+p x^{2}+q x+r=0$ has roots $\alpha \beta, \beta \gamma$ and $\gamma \alpha$.
(b) Find $\int \tan ^{3} \theta d \theta$.
(c) The diagram shows the region bounded by the curve $y=(x+2)^{2}$ and the line $y=4-x$.

Find the volume generated when this region is rotated about the y-axis.
(d) Consider the integral $I_{n}=\int_{0}^{1} \frac{x^{n}}{\sqrt{1-x}} d x$.
(i) Find I_{0}.
(ii) Show that $I_{n-1}-I_{n}=\int_{0}^{1} x^{n-1} \sqrt{1-x} d x$.
(iii) Use integration by parts to show that $I_{n}=\frac{2 n}{2 n+1} I_{n-1}$.
(iv) Hence, evaluate I_{3}.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) A toy car of mass 0.4 kg is set in motion with an initial velocity of $1 \mathrm{~m} / \mathrm{s}$. The resultant force acting on the car is $2-4 v$ newtons, where $v \mathrm{~m} / \mathrm{s}$ is the velocity of the car t seconds after it is set in motion.
Find how long it takes for the car's velocity to reduce to $0.55 \mathrm{~m} / \mathrm{s}$.
(b) (i) Use De Moivre's Theorem to solve the equation $z^{3}=-4+4 \sqrt{3} i$.
(ii) The roots of the equation $z^{3}=-4+4 \sqrt{3} i$ are represented by the points P, Q and R. Plot the roots on an Argand diagram and find the area of triangle $P Q R$, giving your answer in exact form.
(iii) By considering the roots of the equation $z^{3}=-4+4 \sqrt{3} i$, show that

$$
\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}=\cos \frac{\pi}{9}
$$

(c) The diagram below shows the graph of $y=\frac{x}{\sqrt{2-x}}$ for $0 \leq x \leq 1$.

Rectangles of equal width are drawn as shown, in the interval between $x=0$ and $x=1$.

(i) Show that the total area of all the rectangles is given by

$$
S=\frac{1}{n \sqrt{n}}\left[\frac{1}{\sqrt{2 n-1}}+\frac{2}{\sqrt{2 n-2}}+\frac{3}{\sqrt{2 n-3}}+\ldots .+\frac{n}{\sqrt{n}}\right]
$$

(ii) As n increases, the width of the rectangles decreases.

Find $\lim _{n \rightarrow \infty} S$, the limiting value of the total area of all rectangles.

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) Find $\int x^{4} \ln x d x$.
(b) (i) Prove that $a+b \geq 2 \sqrt{a b}$ for $a, b \geq 0$.
(ii) Hence, or otherwise, find the minimum value of the function
$f(x)=\frac{12 x^{2} \sin ^{2} x+3}{x \sin x}$ over the domain $0<x<\pi$.
(c) $\quad A B$ and $C D$ are perpendicular chords intersecting at X.
M is the midpoint of $A D . M X$ produced intersects $B C$ at N.
Show that $M N$ is perpendicular to $B C$.

Question 15 continues on Page 13

Question 15 (continued)
(d) (i) Explain why there are only two distinct ways to paint the faces of a cube such that three faces are red and three faces are blue. Rotations that result in the same colouring pattern are not considered distinct colourings.
(ii) Find the number of ways to paint the cube, if each face is painted in one of two colours: red or blue.
(e) The base of a solid is an equilateral triangle of side length 10 units.

Cross-sections perpendicular to the base and parallel to one side of the triangle are trapeziums with the longer of the parallel sides in the base as shown. The lengths of the two parallel sides of the trapezium are in the ratio 2:3 and the height of the trapezium is bounded by a plane inclined at 60° to the base.

By considering the volume of a typical slice shown, use integration to find the volume of the solid.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) Consider $S_{n}(x)=e^{x^{3}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{3}}\right)$, for integral $n \geq 1$.
(i) Find $S_{1}(x)$ and show that $S_{2}(x)=9 x^{4}-6 x$, for integral $n \geq 1$.

1
(iii) Write down the degree of this polynomial and the leading coefficient.
(b) A skydiver jumps from an airplane and free-falls before opening his parachute. The speed v of a skydiver t seconds after he opens the parachute can be modelled by the equation

$$
\frac{d v}{d t}=-k\left(v^{2}-p^{2}\right)
$$

where p is a constant that depends on the type of the parachute, the mass of the skydiver and gravity.
(i) Show that the velocity of the skydiver is given by $v(t)=p \frac{\left(1+A e^{-2 p k t}\right)}{\left(1-A e^{-2 p k t}\right)}$, where A is a constant.
(ii) If the skydiver is falling at the rate of $10 \mathrm{~m} / \mathrm{s}$ at the instant he opens the parachute, find the constant A in terms of p.
(iii) For a particular skydiver, it is known that $p=5$.

Find the speed of the skydiver in terms of k and t.
(iv) Find the terminal velocity of this skydiver.

Question 16 (continued)
(c) Consider $f(x)=e^{x}\left(1+x^{2}\right)$.
(i) Show that $f^{\prime}(x) \geq 0$ and, by sketching the graph of $f(x)$ or otherwise, explain why $e^{x}\left(1+x^{2}\right)=k$, where k is a constant, has exactly one real root if $k>0$ and no real roots if $k \leq 0$.
(ii) Hence or otherwise, find the number of real roots of the equation

$$
\left(e^{x}-1\right)-k \tan ^{-1} x=0
$$

when $0<k \leq \frac{2}{\pi}$ and when $\frac{2}{\pi}<k<1$ clearly justifying your answer.

End of paper

2018 SYDNEY BOYS HIGH SCHOOL

Mathematics Extension 2

SUGGESTED SOLUTIONS
MC QUICK ANSWERS

$\mathbf{1}$	B
$\mathbf{2}$	D
$\mathbf{3}$	B
$\mathbf{4}$	A
$\mathbf{5}$	C
$\mathbf{6}$	B
$\mathbf{7}$	B
$\mathbf{8}$	C
$\mathbf{9}$	C
$\mathbf{1 0}$	C

SECTION I

MULTIPLE CHOICE SOШIIONS

1 The complex number $x+i y$, where x and y are real constants, is represented in the following diagram.

Which of the following (drawn to the same scale) could represent the complex number ix-y?
A.

C.

D.

$i x-y=i(x+i y)$
$i z$ is represented by rotating the point represented by Z anticlockwise by 90°.

A	0
B	116
C	0
D	2

2 Below is the graph of $y=f(x)$.

A	0
B	2
C	5
D	111

Which of the following could be the graph of $|y|=\sqrt{f(x)}$?
A.

C.

B.

D.

3 The polynomial $P(x)=2 x^{3}-9 x^{2}+12 x+k$ has a double root.
What are the possible values of k ?
A. $k=4$ or 5
B. $k=-4$ or -5
C. $k=-4$ or 5

A	3
B	107
C	5
D	2

D. $k=4$ or -5

$$
\begin{aligned}
P^{\prime}(x) & =6 x^{2}-18 x+12 \\
& =6\left(x^{2}-3 x+2\right) \\
& =6(x-1)(x-2)
\end{aligned}
$$

If $x=\alpha$ is a double root then $P(\alpha)=P^{\prime}(\alpha)=0$
$P^{\prime}(x)=0 \Rightarrow x=1$ or 2
$P(1)=2-9+12+k=0 \Rightarrow k=-5$
$P(2)=16-36+24+k=0 \Rightarrow k=-4$
4 If ω is a complex cube root of unity of least positive argument, what is the value of $\left(1+\frac{1}{\omega}\right)^{2018}$?
(A.) $\frac{1}{\omega}$
B. ω
C. 0
D. 1

If ω is a complex cube root of unity then $1+\omega+\omega^{2}=0$ and $\omega^{3}=1$.
As well, $\omega^{-1}=\bar{\omega}=\omega^{2}$.
$\left(1+\frac{1}{\omega}\right)^{2018}=\left(1+\omega^{2}\right)^{2018}=(-\omega)^{2018}=\omega^{3 \times 224} \times \omega^{2}=\omega^{2}$

5 Which of the following is equivalent to $\int_{0}^{\frac{\pi}{2}} \frac{d x}{3-\cos x+\sin x}$ using the substitution $t=\tan \frac{x}{2}$?
A. $\int_{0}^{\frac{\pi}{2}} \frac{d t}{2 t^{2}+t+1}$
B. $\int_{0}^{\frac{\pi}{2}} \frac{2 d t}{4-t^{2}-2 t}$
C. $\int_{0}^{1} \frac{d t}{2 t^{2}+t+1}$

A	2
B	0
C	111
D	5

D. $\int_{0}^{1} \frac{2 d t}{4-t^{2}-2 t}$

$$
t=\tan \frac{x}{2} \Rightarrow x=2 \tan ^{-1} t
$$

$$
\therefore d x=\frac{2 d t}{1+t^{2}}
$$

$$
x: 0 \sim \frac{\pi}{2}
$$

$$
t: 0 \sim 1
$$

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \frac{d x}{3-\cos x+\sin x} & =\int_{0}^{1} \frac{1}{3-\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}} \times \frac{2 d t}{1+t^{2}} \\
& =\int_{0}^{1} \frac{2 d t}{3\left(1+t^{2}\right)-1+t^{2}+2 t} \\
& =\int_{0}^{1} \frac{2 d t}{4 t^{2}+2 t+2}
\end{aligned}
$$

$6 \quad P(x)=x^{3}-i x^{2}+2 x-1$ has roots α, β and γ. What is the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$?
$\begin{array}{ll}\text { A. } & 3+i \\ \text { B. } & 3-7 i \\ \text { C. } & 1+i\end{array}$

A	15
B	85
C	5
D	13

D. $1-7 i$
$\sum \alpha=i ; \quad \sum \alpha \beta=2 ; \quad \alpha \beta \gamma=1 ; \quad \sum \alpha^{2}=\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta=(i)^{2}-2(2)=-5$
As $P(\alpha)=P(\beta)=P(\gamma)=0$

$$
\left.\begin{array}{ll}
\alpha^{3}-i \alpha^{2}+2 \alpha-1=0 \\
\beta^{3}-i \beta^{2}+2 \beta-1=0 \\
\gamma^{3}-i \gamma^{2}+2 \gamma-1=0
\end{array}\right\}+\quad \therefore \sum \alpha^{3}-i \sum \alpha^{2}+2 \sum \alpha-3=0
$$

7 The shaded region bounded by the curve $x=y^{2}$ and the line $x=4$ is rotated about the line $y=4$.

$$
\begin{aligned}
r= & 4-y \\
h= & 4-x \\
\delta V & \doteqdot 2 \pi r h \delta y \\
& =2 \pi(4-y)(4-x) \delta y
\end{aligned}
$$

Which of the following gives the expression for the volume of the solid of revolution using the method of cylindrical shells?
A. $2 \pi \int_{-2}^{2} x y d y$
B. $2 \pi \int_{-2}^{2}(4-x)(4-y) d y$
C. $\quad 4 \pi \int_{0}^{2} x y d y$

A	2
B	87
C	2
D	27

D. $4 \pi \int_{0}^{2}(4-x)(4-y) d y$

8 A horizontal force of P newtons causes a mass of $m \mathrm{~kg}$ moving in a straight line to accelerate. The total resistance to the object's motion is $k v^{2}$ newtons per unit mass, where v is the speed of the object in m / s and k is a positive real constant. What is the equation of motion of the object?
A. $m \frac{d v}{d t}=P-k v^{2}$
B. $\frac{d v}{d t}=P-k v^{2}$

A	25
B	11
C	77
D	5

$$
\xrightarrow{+}
$$

C. $m \frac{d v}{d t}=P-m k v^{2}$
D. $\frac{d v}{d t}=P-m k v^{2}$

9 Caleb has a jar of coins. There are ten coins each of 5 cent, 10 cent, 20 cent and 50 cent denominations. Caleb asks his friend Declan to choose eight coins from the jar. In how many ways can Declan choose the eight coins?
A. 4^{8}
B. ${ }^{40} C_{8}$
C. ${ }^{11} C_{3}$
D. ${ }^{7} C_{3}$

A	31
B	47
C	30
D	9

Start with all the coins being identical.
With the 8 coins we need 3 dividers to separate the coins.

$$
\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet
$$

Coins to the left of the $1^{\text {st }}$ divider become 5ϕ coins. Then to the left of the next two dividers become 10ϕ and 20ф coins respectively.
To the right of the $3^{\text {rd }}$ divider become the $50 \notin$ coins.
With 8 identical coins and three identical dividers there are $\frac{11!}{8!\times 3!}={ }^{11} C_{3}$ ways.
For example:

This is the same as $2,3,3,0$

OR

Start with all the coins being identical.
With the 8 coins we need 3 dividers to separate the coins.
Coins to the left of the $1^{\text {st }}$ divider become $5 ¢$ coins.
Then to the left of the next two dividers become 10ϕ and 20ϕ coins respectively.
To the right of the $3^{\text {rd }}$ divider become the $50 \not \subset$ coins.
There are 9 positions for the first divider. Then there are 10 positions for the second divider and finally 11 positions for the third divider.
As the three dividers are identical, divide by 3!.
So there are $\frac{11 \times 10 \times 9}{3!}={ }^{11} C_{3}$ ways
$10 \quad f(x)$ is an even function. Which of the following is not necessarily true?
A. $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(a-x) d x$
B. $\int_{0}^{2 a} f(x) d x=\int_{-2 a}^{0} f(-x) d x$
C. $\int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(a-x) d x+\int_{a}^{2 a} f(2 a-x) d x$
D. $\int_{a}^{2 a} f(x) d x=\int_{0}^{a} f(a+x) d x$

Note $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$

A	17
B	6
C	56
D	39

$$
\begin{aligned}
\int_{0}^{2 a} f(x) d x & =\int_{0}^{a} f(x) d x+\int_{a}^{2 a} f(x) d x \\
& =\int_{0}^{a} f(a-x) d x+\int_{a}^{2 a} f(x) d x \\
& =\int_{0}^{a} f(a-x) d x+\int_{0}^{a} f(2 a-x) d x
\end{aligned}
$$

$$
\times 2 \text { TRIAL }
$$

Question 11
a

$$
\begin{aligned}
\frac{5}{2-4 i} & =\frac{5}{2-4 i} \times \frac{2+4 i}{2+4 i} \\
& =\frac{10(1+2 i)}{20} \\
& =\frac{1}{2}+i
\end{aligned}
$$

Commit The question stable
"write in the form $x+i y$
very few parted to get the 1 mark.
b

$$
\begin{aligned}
(i+\sqrt{3})^{5} & =(\sqrt{3}+i)^{5} \\
& =\left(2 \operatorname{cis} \frac{\pi}{6}\right)^{5} \\
& =32\left(\cos \frac{5 \pi}{6}+i \sin \frac{\sqrt{\pi} 6}{6}\right) \\
& =32\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) \\
& =-16 \sqrt{3}+16 i \\
\therefore \text { Real Part } & =-16 \sqrt{3} \\
\text { Arnagnain Past } & =16)_{2}
\end{aligned}
$$

COMMEAT Tgenerally well done.
Common estor was to interknet

$$
i+\sqrt{3} \text { as } 1+i \sqrt{3}
$$

a pen pailed to simplity their manmer. derpite elearly stated in the genepal instructions

- "Leave gour ancmess in sinplest esact prin, unles athervise stated."
(c) (i)

Comment Welldone.
(II) $z=\sqrt{2}$ is $\frac{-\pi}{4}$

$$
w=2 \sqrt{3} i n-\frac{2 \pi}{3}
$$

Now $\arg (z \omega)$

$$
\begin{aligned}
& =\arg g+\arg \omega \\
& =-\frac{\pi}{4}+-\frac{2 \pi}{3} \\
& =\left|-\frac{11 \pi}{12}\right|
\end{aligned}
$$

Comment (c) (iI)
Accepted $\frac{13 \pi}{12}$ (which is equidatent.)
por the I mart.
(d) (c) $x=2-3 i$ is a root of $f(x)=0$.
\therefore by congugate woot theosm.

$$
x=2+3 i \text { is also a xoot }\binom{\text { o-epficienth }}{\text { are real }}
$$

$\therefore(x-(2-3 i))(x-(2+3 i))$ is a pactor.
ie $x^{2}-4 x+13$ is a pactor.

$$
\begin{array}{r}
x ^ { 2 } - 4 x + 1 3 \longdiv { \frac { x ^ { 4 } + 2 x ^ { 3 } + 2 x ^ { 2 } + 2 6 x + 1 6 9 } { \frac { x ^ { 4 } - 4 x ^ { 3 } + 1 3 x ^ { 2 } } { 6 x ^ { 3 } - 1 1 x ^ { 2 } } + 2 6 x } } \frac { 6 x ^ { 3 } - 2 4 x ^ { 2 } + 7 8 x } { 1 3 x ^ { 2 } - 5 2 x + 1 6 9 } \\
\frac{13 x^{2}-52 x+169}{\left(x^{2}+6 x+13\right)}
\end{array}
$$

Commirmi well done. Of counce there ane other afproacdes to this questron.
(ii) the poets of $x^{2}+6 x+13=0$.

$$
\begin{aligned}
x & =\frac{-6 \pm \sqrt{36-52}}{2} \\
& =\frac{-6 \pm 4 i}{2} \\
& =-3 \pm 2 i
\end{aligned}
$$

\therefore The four roots are.

$$
2 \pm 3 i,-3 \pm 2 i
$$

Comment well done.
(e).

now $\theta=\sin ^{-1} \frac{2}{3}$
\therefore least argument

$$
\text { is } \begin{aligned}
& \frac{\pi}{\frac{\pi}{2}-\sin ^{-1} \frac{2}{3}} \\
&=148^{\circ} 11!
\end{aligned}
$$

COMBENT Common mistakes were.
(I) Wrong shading
(ii) A in the westing place.
(II) Not using a single dhagatan.

Ext 2 Y12 THC 2018 Q12 solutions

Mean (out of 15): 12.03

This was done quite well. A common error was considering $2+2 x-x^{2}$ as $1-(x-1)^{2}$ rather than as $3-(x-1)^{2}$.

0	0.5	1	1.5	2	Mean
5	5	0	17	91	1.78

(b) (i) $2 x^{3}+y^{3}=5 y$
$\therefore 6 x^{2}+3 y^{2} y^{\prime}=5 y^{\prime}$
$\therefore 6 x^{2}=y^{\prime}\left(5-3 y^{2}\right)$
$\therefore y^{\prime}=\frac{6 x^{2}}{5-3 y^{2}}$

Very well done.

0	0.5	1	1.5	2	Mean
0	0	1	0	117	1.99

(ii) For horizontal tangent	
y^{\prime}	$=0$
$\therefore 6 x^{2}$	$=0$
$\therefore x$	$=0$

$$
\begin{aligned}
& \therefore 0+y^{3}=5 y \\
& \therefore y\left(y^{2}-5\right)=0 \\
& \therefore y=0, \sqrt{5},-\sqrt{5}
\end{aligned}
$$

Done well in general. Some looked at $5-3 y^{2}=0$ and so were finding where the derivative was
undefined rather than being equal to 0 . Some, when solving $y^{3}=5 y$, discarded $y=0$.

0	0.5	1	Mean
15	15	88	0.81

(c) | $\overrightarrow{A D}$ | $=\overrightarrow{A C}+\overrightarrow{C D}$ |
| ---: | :--- |
| | $=2 z_{1}+\frac{3}{4}\left(z_{2}-3 z_{1}\right)$ |
| | $=2 z_{1}+\frac{3}{4} z_{2}-\frac{9}{4} z_{1}$ |
| | $=\frac{3}{4} z_{2}-\frac{1}{4} z_{1} \quad$ (2) |

There were a few approaches used to determine the required expression for $\overrightarrow{A D}$.

0	0.5	1	1.5	2	Mean
28	12	14	15	49	1.19

(a) | y | $=\frac{x^{2}+m x-n}{x+3}$ |
| ---: | :--- |
| (i) For stationary points $y^{\prime}=0$ | |
| y^{\prime} | $=\frac{(x+3)(2 x+m)-\left(x^{2}+m x-n\right) \times 1}{(x+3)^{2}}$ |
| | $=\frac{2 x^{2}+m x+6 x+3 m-x^{2}-m x+n}{(x+3)^{2}}$ |
| | $=\frac{x^{2}+6 x+3 m+n}{(x+3)^{2}}$ |
| \quad If $y^{\prime}=0$ | |
| $x^{2}+6 x+3 m+n=0$ | |
| For stationary points, $\Delta>0$ | |
| $\therefore 6^{2}-4 x 1 \times(3 m+n)>0$ | |
| $\therefore 36-12 m-4 n>0$ | |
| $\therefore 9-3 m-n>0$ | |
| $\therefore 9-3 m>n$ | |
| $\therefore n<9-3 m$ | |

Most were able to determine the derivative and then consider the discriminant of the numerator to find the required condition for the existence of 2 stationary points.

0	0.5	1	1.5	2	Mean
4	11	13	1	89	1.68

Some students did not see the relationship to part (i) which emphasises that 2 stationary points exist for the given values of m and n. Some did not try to find the x and y intercepts. Identifying $y=x-1$ as an
asymptote was reasonably well done, although some diagrams did not then sketch the graph as approaching this line at the extremities. Consideration of the curves behaviour on either side of $x=-3$
would have led to better sketches.

0	0.5	1	1.5	2	Mean
13	23	22	32	28	1.17

This was done quite well.

0	0.5	1	1.5	2	Mean
1	0	9	5	103	1.89

$$
\text { (ii) } y=\sin ^{-1}(f(x))
$$

This requires $-1 \leqslant f(x) \leqslant 1$
$\therefore x<-1.5^{k}-0.5^{k} \leqslant x \leqslant 0.5^{k}$ *approximate valuer.

This was done quite well. A common error was not including the section of the sketch associated with the piece on the original diagram where $x<-1$. Other errors were not restricting sketches to the regions where $-1 \leq f(x) \leq 1$ and not restricting the range of the sketch to $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

0	0.5	1	1.5	2	Mean
8	5	16	33	56	1.53

13) a) Form equation with roots
$\alpha \beta, \beta \gamma$ and $\gamma \alpha$
ie $\frac{\alpha \beta \gamma}{\gamma}, \frac{\alpha \beta \gamma}{\alpha}, \frac{\alpha \beta \gamma}{\beta}$
since $\alpha \beta \gamma=-\frac{d}{a}$

$$
\alpha \beta \gamma=-3
$$

let

$$
\begin{aligned}
& x=-\frac{3}{x} \\
& x=-\frac{3}{x} \\
& \left(-\frac{3}{x}\right)^{3}+2\left(-\frac{3}{x}\right)^{2}+\left(-\frac{3}{x}\right)+3=0 \\
& -\frac{27}{x^{3}}+\frac{18}{x^{2}}-\frac{3}{x}+3=0 \\
& 3 x^{3}-3 x^{2}+18 x-27=0 \\
& x^{3}-x^{2}+6 x-9=0 \\
& \therefore p=-1, q=6, r=-9
\end{aligned}
$$

OR

$$
\begin{aligned}
& \alpha+\beta+\gamma=-\frac{b}{a} \\
& \alpha+\beta+\gamma=-2 \\
& \alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a} \\
& \alpha \beta+\alpha \gamma+\beta \gamma=1 \\
& \alpha \beta \gamma=-\frac{\alpha}{a} \\
& \alpha \beta \gamma=-3
\end{aligned}
$$

The -oots of $x^{3}+p x^{2}+q x+r=0$ are $\alpha \beta$, γ and $\alpha \gamma$.

$$
\begin{gathered}
\alpha \beta+\beta \gamma+\alpha \gamma=-\frac{b}{a} \\
=-p \\
\therefore p=-1 \\
\alpha \beta \cdot \beta \gamma+\alpha \beta \cdot \alpha \gamma+\beta \gamma \cdot \alpha \gamma=\frac{c}{a} \\
\alpha \beta \gamma(\alpha+\beta+\gamma)=q \\
-3(-2)=q \\
\therefore q=6 \\
\alpha \beta \cdot \beta \gamma \cdot \alpha \gamma=-\frac{\alpha}{a} \\
(\alpha \beta \gamma)^{2}=-r \\
(-3)^{2}=-r \\
r=-9
\end{gathered}
$$

COMMENT:
Most students had an idea as to how to do the question. Students need to make sure they answer the question and take care with algebra.
b)

$$
\begin{aligned}
& \int \tan ^{3} \theta d \theta \\
= & \int \tan ^{2} \theta \cdot \tan \theta d \theta \\
= & \int\left(\sec ^{2} \theta-1\right) \tan \theta d \theta \\
= & \int\left(\sec ^{2} \theta \cdot \tan \theta-\tan \theta\right) d \theta \\
= & \int\left(\frac{1}{2} \cdot 2 \sec ^{2} \theta \cdot \tan \theta+\frac{-\sin \theta}{\cos \theta}\right) d \theta
\end{aligned}
$$

$$
=\frac{1}{2} \tan ^{2} \theta+\ln |\cos \theta|+C
$$

Note: other answers are valid such as $\frac{1}{2} \sec ^{2} \theta-\ln / \sec \theta /+C$

COMMENT:
All students should be able to do this. sadly not all could.
c)

$$
\begin{aligned}
& y=4-x \\
& y=(x+2)^{2} \\
& (x+2)^{2}=4-x \\
& x^{2}+4 x+4=4-x \\
& x^{2}+5 x=0 \\
& x(x+5)=0 \\
& x=0,-5
\end{aligned}
$$

$$
\begin{aligned}
& x=0,-5 \\
& \Delta V=2 \pi r h \Delta x \\
& \Delta V=2 \pi(-x)\left(y_{1}-y_{2}\right) \Delta x \\
& V=\lim _{\Delta x \rightarrow 0} \sum_{x=-5}^{0} 2 \pi(-x)\left(4-x-(x+2)^{-2}\right) \Delta x \\
& r=2 \pi \int_{-5}^{0}(-x)\left(4-x-\left(x^{2}+4 x+4\right)\right) d x \\
& V=2 \pi \int_{-5}^{0}\left(x^{3}+5 x^{2}\right) d x \\
& V=2 \pi\left[\frac{x^{4}}{4}+\frac{5 x^{3}}{3}\right]_{-5}^{0} \\
& V=2 \pi\left[(0)-\left(\frac{(-5)^{4}}{4}+\frac{5(-5)^{3}}{3}\right)\right] \\
& V=\frac{625 \pi}{6} \text { wabic units. }
\end{aligned}
$$

OR

$$
\begin{gathered}
y=(x+2)^{2} \\
x+2= \pm \sqrt{y} \\
x=-2 \pm \sqrt{y} \\
x_{1}=-2-\sqrt{y} \\
x_{3}=-2+\sqrt{y}
\end{gathered}
$$

$$
\Delta V_{1}=\pi\left(\left(-x_{1}\right)^{2}-\left(-x_{2}\right)^{2}\right) \Delta y
$$

$$
=\pi\left(x_{1}{ }^{2}-x_{2}^{2}\right) \Delta y
$$

$$
V_{1}=\lim _{\Delta y \rightarrow 0} \sum_{y=4}^{9} \pi\left((-2-\sqrt{y})^{2}-(4-y)^{2}\right) \Delta y
$$

$$
v_{1}=\pi \int_{4}^{9}\left(4+4 y^{\frac{1}{2}}+y-\left(16-8 y+y^{2}\right)\right) d y
$$

$$
V_{1}=\pi \int_{4}^{9}\left(-12+4 y^{\frac{1}{2}}+9 y-y^{2}\right) d y
$$

$$
V_{1}=\pi\left[-12 y+\frac{8}{3} y^{3 / 2}+\frac{9}{2} y^{2}-\frac{y^{3}}{3}\right]_{4}^{9}
$$

$$
V_{1}=\pi\left[-12(-9)+\frac{8}{3}(9)^{3 / 2}+\frac{9}{2}(9)^{2}-\frac{(9)^{3}}{3}-\left(-12(4)+\frac{8}{3}(4)^{3 / 2}+9\left(\frac{4}{2}\right)^{2}-\frac{(4)^{3}}{3}\right)\right]
$$

$$
V_{1}=\frac{123 \pi}{2}
$$

$$
\begin{aligned}
\Delta v_{2} & =\pi\left(\left(4+x_{3}\right)^{2}-\left(-x_{3}\right)^{2}\right) \Delta y \\
& =\pi\left(16+8 x_{3}+x_{3}^{2}-x_{3}^{2 /}\right) \Delta y \\
v_{2} & =\lim _{\Delta y \rightarrow 0} \sum_{y=0}^{4} 8 \pi\left(x_{3}+2\right) \Delta y \\
v_{2} & =8 \pi \int_{0}^{4}(-\not 2+\sqrt{y}+2 / 2) d y
\end{aligned}
$$

$$
\begin{aligned}
& v_{2}=8 \pi \int_{0}^{4} y^{\frac{1}{2}} d y \\
& v_{2}=8 \pi\left[\frac{2}{3} y^{3 / 2}\right]_{0}^{4} \\
& r_{2}=8 \pi\left[\frac{2}{3}(4)^{3 / 2}-(0)\right] \\
& r_{2}=\frac{128-\pi}{3} \\
& V=v_{1}+v_{2} \\
& \\
& =\frac{123 \pi}{2}+\frac{128 \pi}{3} \\
& =\frac{625 \pi}{6}
\end{aligned}
$$

COMMENT:
students should know that cylindrical shells is the best method as ΔV is consistent across the range

Most student's were unaware that the -adivs. of the y lindrical shell is in fact ($-x$).
As a result a lot of answers didn't match the working.
This question was done poorly.
A good diagram with clearly labelled points goes a long way!
d) i)

$$
\begin{aligned}
I_{0} & =\int_{0}^{1} \frac{x^{0}}{\sqrt{1-x}} d x \\
& =\int_{0}^{1}(1-x)^{-\frac{1}{2}} d x \\
& \left.=\frac{(1-x)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)(-1)}\right]_{0}^{1} \\
& =[-2 \sqrt{1-x}]_{0}^{1} \\
& =-2 \sqrt{1-(1)}-(-2 \sqrt{1-(0)}) \\
& =2
\end{aligned}
$$

ii)

$$
\begin{aligned}
I_{n-1}-I_{n} & =\int_{0}^{1} \frac{x^{n-1}}{\sqrt{1-x}} d x-\int_{0}^{1} \frac{x^{n}}{\sqrt{1-x}} d x \\
& =\int_{0}^{1} \frac{x^{n-1}}{\sqrt{1-x}}(1-x) d x \\
& =\int_{0}^{1} x^{n-1} \sqrt{1-x} d x
\end{aligned}
$$

iii)

$$
I_{n-1}-I_{n}=\int_{0}^{1} x \sqrt[n-1]{1-x} d x
$$

$$
u=\sqrt{1-x} \quad v^{\prime}=x^{n-1}
$$

$$
u=-\frac{1}{2 \sqrt{1-x}} \longleftrightarrow v=\frac{x^{n}}{n}
$$

$$
=\left[\frac{x^{n}}{n} \sqrt{1-x}\right]_{0}^{1}+\frac{1}{2 n} \int_{0}^{1} \frac{x^{n}}{\sqrt{1-x}} d x
$$

$$
\begin{aligned}
& I_{n-1}-I_{n}=\theta+\frac{1}{2 n} I_{n} \\
& \left(\frac{1}{2 n}+1\right) I_{n}=I_{n-1} \\
& \left(\frac{2 n+1}{2 n}\right) I_{n}=I_{n=1}
\end{aligned}
$$

$$
\begin{aligned}
I_{n} & =\frac{2 n}{2 n+1} I_{n-1} \\
\text { ax } I_{n} & =\int_{0}^{1} \frac{x^{n}}{\sqrt{1-x}} d x \quad I_{n}^{u=x^{n}} r^{\prime}=\frac{1}{\sqrt{1-x}} \\
I_{n} & =\left[2 x^{n} \sqrt{1-x}\right]_{0}^{1}+2 n \int_{0}^{1} x^{n-1} \sqrt{1-x} d x \\
I_{n} & =0+2 n\left[I_{n-1}-I_{n}\right] \quad \text { from (ii) } \\
I_{n} & =I_{n} I_{n-1}-2 n I_{n} \\
(2 n+1) I_{n} & =2 n I_{n-1} \\
I_{n} & =\frac{2 n}{2 n+1} I_{n-1}
\end{aligned}
$$

iv)

$$
\begin{aligned}
I_{3} & =\frac{2(3)}{2(3)+1} I_{2} \\
& =\frac{6}{7} I_{2} \\
& =\frac{6}{7}\left(\frac{2(2)}{2(2)+1} I_{1}\right) \\
& =\frac{6}{7}\left(\frac{4}{5} I_{1}\right) \\
& =\frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2(1)}{2(1)+1} I_{0} \\
& =\frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} \cdot(2) \quad \text { from (i) } \\
& =\frac{32}{35}
\end{aligned}
$$

COMMENT:
This question was done reasonably well. Even if they couldn't do all parts students picked up marks for the parts that they could do.

Solutions \& Comments to q14 MEZ
(a)

$$
\begin{aligned}
& m_{r}=0.4 \mathrm{~kg}, \quad V=1 \mathrm{~m} / \mathrm{s} \\
& \therefore \quad(0.4) \ddot{i}=2-4 v \\
& \frac{d v}{d t}=\frac{2.4 v}{0.4}=5-10 \mathrm{v}
\end{aligned}
$$

$21 \dot{d} \quad \frac{d t}{d v}=\frac{1}{5(1-2 v)}$
o-paratilig the variables.

$$
\begin{array}{rlr}
& \int d t=-\frac{1}{10} \int_{0}^{0.55}\left(\frac{1-2 v}{1-2 v}\right) d v \\
\therefore \quad & t=\left[-\frac{1}{10} \ln |1-2 v|\right]_{0}^{0.55} \\
& =\frac{1}{10} \ln 10 \doteq 0.23 \sec
\end{array}
$$

(a) Comment:
Most students did well in this section as it should be for such problem.
Few students left it as $\frac{1}{10} \ln 10$ (No penalty) or - $\frac{1}{10} \ln \left(\frac{1}{10}\right)$. Less than 10 students were hot able to separate the variables and hence perform the convect int eg rat ion.

Solution \& comments to 914 ME 2
(b)

$$
\begin{align*}
z^{3} & =-4+4 \sqrt{3} i \\
& =4(-1+\sqrt{3 i}) \\
& =8=15\left(\frac{2 \pi}{3}\right) \tag{1}
\end{align*}
$$

\therefore General solutions are:

$$
Z=8^{\frac{1}{3}}\left[\operatorname{cis}\left(\frac{2 \pi}{3}+2 k \pi\right)\right]
$$

lie

$$
\begin{gathered}
z=2\left[\cos \left(\frac{6 k+2}{9}\right) \pi+i \sin \left(\frac{6 k+2}{9}\right)\right] \\
f \circ r k=-1,0,1
\end{gathered}
$$

comment
(b)

The roots are therefore

$$
2 \operatorname{cis}\left(-\frac{4 \pi}{9}\right), 2 \omega \operatorname{cis}\left(\frac{2 \pi}{9}\right) 2 \operatorname{cis}\left(\frac{8 \pi}{9}\right)
$$

- Quite a few students dial not know the roots are equally spaced on a circle of $t=2$ on the Argand diagram.
(\therefore penalty applied depends on Within) but most did well.
(b)

- Area of $\triangle O P Q$

$$
=\frac{1}{2} \times 2^{2} \times \sin \frac{2 \pi}{3}=\sqrt{3}
$$

$$
\therefore \text { Area of } \triangle P Q R
$$

$$
=3 \times \text { Area of }
$$

$$
\triangle O P Q=3 \sqrt{3}
$$

(b) (ii) \leq moment:
well $d o n e$ in this section
Few students try to find
$|P Q|$ or $|P R|$ or $|Q R| \cdots \cdots$
but Ware no to nite successful
(b) (iii)

From (i)

$$
Z^{3}-(-4+4 \sqrt{3} i)=0
$$

$$
\begin{aligned}
& z=2 \text { cis }\left(\frac{6 k+2}{9}\right) \pi, k=-1,0,1 . \\
& \text { too ts are: }
\end{aligned}
$$

\therefore too ts are:
$2 \operatorname{cis}\left(-\frac{4 \pi}{9}\right), 2 \operatorname{cis}\left(\frac{2 \pi}{9}\right) 2 \operatorname{cis}\left(\frac{8 \pi}{9}\right)$
Now $\sum \alpha_{i}=-\frac{b}{a}=0$.
le $2\left[\operatorname{cis}\left(\frac{-4 \pi}{9}\right)+\operatorname{cis}\left(\frac{2 \pi}{9}\right)+\operatorname{cis}\left(\frac{8 \pi}{9}\right)\right]=0$ Equate real and imaginary pts:
$4 \cos \left(\frac{4 \pi}{9}\right)+\cos \left(\frac{2 \pi}{9}\right)+\cos \left(\frac{8 \pi}{9}\right)=0$
(1) $k \sin g$
(b) (iii) Comment:

Alsuost half by the students did ho $t \operatorname{apply}(1)$ and hence lose one mark. Some try to 'fudge' answers (3)

$$
\begin{aligned}
& \Leftrightarrow(-\theta)=600 \quad \therefore \cos \left(-\frac{4 \pi}{9}\right)=\cos \left(\frac{4 \pi}{9}\right) \\
& \cos (\pi-\theta)=-4 \pi \theta \quad \cos \left(\frac{8 \pi}{9}\right)=-4 \pi\left(\pi-\frac{\theta}{9}\right) \\
& \square \text { and } \downarrow=-\cos \frac{\pi}{9} \\
& \cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}-\cos \frac{\pi}{9}=0 \\
& \therefore \cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}=\cos \frac{\pi}{9}
\end{aligned}
$$

Solutions \& Comments to $P / 4$ (c) (i), (ii)
(c) (i)

$$
y=\frac{x}{\sqrt{2-x}}
$$

Let sn be the sum of the areas of the rectangles

$$
\begin{align*}
S_{1} & =1 \text { ength }(\text { height }) \times w(d+h . \\
& =\frac{\left(\frac{1}{n}\right)}{\sqrt{2-\left(\frac{1}{n}\right)}} \times \frac{1}{n}=\frac{1}{n \sqrt{n}}\left(\frac{1}{\sqrt{2 n-1}}\right. \\
S_{2} & =\frac{\left(\frac{2}{n}\right)}{\sqrt{2-\left(\frac{2}{n}\right)}} \times \frac{1}{n}=\frac{1}{n \sqrt{n}}\left(\frac{2}{\sqrt{2 n-2}}\right) \\
I_{n} & =\frac{1}{n \sqrt{n}} \times \frac{n}{\sqrt{2 n-n}} \tag{11}\\
\left(S_{e}\right. & =\frac{1}{n \sqrt{n}}\left(\frac{1}{\sqrt{2 n-1}}+\frac{2}{\sqrt{2 n-2}}+\cdots+\frac{n}{\sqrt{2 n-n}}\right)
\end{align*}
$$

Comment:
Students has to show S_{1} and s_{2} Inorder to greet the first mark.
Almost all of the students did well lin this part
(c) (ii) The question is to find the limiting sum: In ord er to do this properly you need to show

- $\frac{1}{n} \sum_{r=0}^{n-1} f\left(\frac{r}{n}\right)<\int_{0}^{1} f(x) d x<\frac{1}{n} \sum_{r=1}^{n} f\left(\frac{r}{n}\right)$ or equivalent merit.

Solutions \& commats to 14 c (ii)
$<$ (ii): The interval $[0,1]$ is divided into n equal parts, each of Width $h=\frac{1}{n}$.
Let the sum of inner rectangles be s, the outerrectanglos be s, ad the area between the curve $y=f(x)$ be A.

$$
\begin{aligned}
& S=\frac{1}{n}\left[f(0)+f\left(\frac{1}{n}\right)+\cdots+f\left(\frac{n-1}{n}\right)\right] \\
&=\frac{1}{n}\left[f\left(\frac{0}{n}\right)+f\left(\frac{1}{n}\right)+\cdots+f\left(\frac{n-1}{n}\right)\right] \\
&= \frac{1}{n} \sum_{r=0}^{n-1} f\left(\frac{r}{n}\right) \\
& A=\int_{0}^{1} f(x) d x \\
& S=\frac{1}{n} \sum_{r=1}^{n} f\left(\frac{r}{n}\right) . \\
& \therefore \frac{1}{n} \sum_{r=0}^{n-1} f\left(\frac{r}{n}\right)<\int\left(f(x) d x<\frac{1}{n} \sum_{r=1}^{n} f\left(\frac{r}{n}\right)\right.
\end{aligned}
$$

(sand wich the orem).

$$
\begin{aligned}
& \text { As } n \rightarrow \infty \\
& 2 \text { to the area } \rightarrow \int_{0} \frac{l}{\sqrt{2-x}} d x
\end{aligned}
$$

from above
1

$$
\begin{align*}
& \therefore \lim _{n} S_{n}=\int_{0} \frac{1}{\sqrt{V}} \tag{5}\\
& \text { et } \mu=2-k ; \quad d u \\
& \text { When } x=0, \mu=2 \\
& x=1, \mu=1
\end{align*}
$$

Solutions \& Commits to $P(4(c)$ (ii)

$$
\begin{aligned}
& <\text { (ii) } \lim _{x \rightarrow \infty} S_{n}=\int_{2}^{1} \frac{2-\mu}{\sqrt{u}} d u \\
& =\int_{1}^{2}\left(2 u^{-1 / 2}-\mu^{\frac{1}{2}}\right) d u \\
& =\left[4 u^{\frac{1}{2}}-\frac{2}{3} \mu^{3 / 2}\right]^{2} \\
& =\sqrt{2}\left(\frac{(2-4}{3}\right)-\frac{10}{3} \\
& =\frac{8 \sqrt{2}-10}{3} \text { sq. units. }
\end{aligned}
$$

C anent on $c(i i)$
A brut 2070 org the students did not realize as $u \rightarrow \infty$ thequea $\rightarrow \int_{0}^{\int} \frac{1 x}{\sqrt{2-n}} d x$ from above'

- I mark is deduced if some Comment were no t made abort the limiting sum as an int oral: Students (Some) has trouble li doing integration by substitution.

Question 15 SOLIIONS

(a) Find $\int x^{4} \ln x d x$. 2

$$
\begin{aligned}
\int x^{4} \ln x d x & =\int \frac{d}{d x}\left(\frac{1}{5} x^{5}\right) \ln x d x \\
& =\frac{1}{5} x^{5} \ln x-\int \frac{1}{5} x^{5} \frac{d}{d x}(\ln x) d x \\
& =\frac{1}{5} x^{5} \ln x-\int \frac{1}{5} x^{5} \times \frac{1}{x} d x \\
& =\frac{1}{5} x^{5} \ln x-\frac{1}{5} \int x^{4} d x \\
& =\frac{1}{5} x^{5} \ln x-\frac{1}{5} \times \frac{1}{5} x^{5}+C \\
& =\frac{1}{5} x^{5} \ln x-\frac{1}{25} x^{5}+C
\end{aligned}
$$

Comment

This was generally done well.
(b) (i) Prove that $a+b \geq 2 \sqrt{a b}$ for $a, b \geq 0$. 1

> Since $(\sqrt{a}-\sqrt{b})^{2} \geq 0$ then $a+b-2 \sqrt{a b} \geq 0$
> $\therefore a+b \geq 2 \sqrt{a b}$

ALIERNATIVE

$$
\begin{aligned}
& \text { LHS }- \text { RHS }=a+b-2 \sqrt{a b} \\
&=(\sqrt{a}+\sqrt{b})^{2} \\
& \geq 0 \\
& \therefore \text { LHS } \geq \text { RHS }
\end{aligned}
$$

Comment

This is the quickest way to do the problem without having any troublesome logic.
(ii) Hence, or otherwise, find the minimum value of the function
$f(x)=\frac{12 x^{2} \sin ^{2} x+3}{x \sin x}$ over the domain $0<x<\pi$.

For $0<x<\pi, \sin x>0$ and so $x \sin x>0$
Minimum value $=12$
Method 1:

$$
\begin{aligned}
\frac{12 x^{2} \sin ^{2} x+3}{x \sin x} & \geq \frac{2 \sqrt{12 x^{2} \sin ^{2} x \times 3}}{x \sin x} \\
& =\frac{2 \sqrt{36 x^{2} \sin ^{2} x}}{x \sin x} \\
& =\frac{12 x \sin x}{x \sin x} \\
& =12
\end{aligned}
$$

Method 2:

$$
\begin{aligned}
\frac{12 x^{2} \sin ^{2} x+3}{x \sin x} & =12 x \sin x+\frac{3}{x \sin x} \\
& \geq 2 \sqrt{12 x \sin x \times \frac{3}{x \sin x}} \\
& =2 \sqrt{36} \\
& =12
\end{aligned}
$$

Comment

Many students could not see the link from part (i).
(c) $A B$ and $C D$ are perpendicular chords intersecting at X.

Construct MXN.
Construct circle $A X D$
(Note: all triangles are concylic)
$A D$ is a diameter of a circle through the vertices of $\triangle A X D$ (converse of angles in a semi-circle)
As M is the midpoint of $A D$, then M is the centre of circle $A X D$,
Let $\angle M A X=\alpha$ and $\angle M D X=\beta$.
$\therefore \alpha+\beta=90^{\circ}$
$M X=M D$
$\therefore \angle M X D=\angle M D X=\beta$
$\therefore \angle C X N=\beta$
(angle sum of $\triangle A X D$)
$\angle X C N=\angle M A X=\alpha$
(angles in same segment, circle $A C B$)
$\therefore \angle X C N+\angle C X N=\alpha+\beta=90^{\circ}$
$\therefore \angle C N X=90^{\circ}$
(angle sum of $\triangle X C N$)
$\therefore M N \perp C B$

Comment

Too many students are wasting time verifying that all the angles at X are right angles. It was written that $A B \perp C D$.
Even allowing for legitimate abbreviations, students who wrote down abbreviations that did not make sense were penalised.
Students not referring to the "converse of the angle in a semi-circle" were penalised a $1 / 2$ mark, but students who didn't even both to give a legitimate reason lost 1 mark.
(d) (i) Explain why there are only two distinct ways to paint the faces of a cube such that three faces are red and three faces are blue. Rotations that result in the same colouring pattern are not considered distinct colourings.

The two cases are when two red (or blue) sides are directly opposite or not. Or consider when three faces meet at a common point or not.
(I)

(II)

Comment

Given that this was a "Show that ..." question, there were many "manufactured" answers. These did not score well.
(ii) Find the number of ways to paint the cube, if each face is painted in one of two colours: red or blue.

The following cases exist:
(i) $\quad 6 \mathrm{R}$ and $0 \mathrm{~B} \quad(6 \mathrm{~B}$ and 0 R$)$

There is only 1 way for 6 R .
So there are 2 cases where there is only 1 colour.
(ii) 5 R and $1 \mathrm{~B} \quad(5 \mathrm{~B}$ and 1 R$)$

Pick any face and paint it blue.
\therefore there is only 1 case for $5 R$ and $1 B$.
So there are 2 cases for either 1B or $1 R$.
(iii) 4 R and $2 \mathrm{~B} \quad(4 \mathrm{~B}$ and 2 R$)$

Either the 2B are directly opposite or not. So there are 4 cases for either $2 B$ or $2 R$.
(iv) 3 R and 3 B

From (i), there are 2 cases.
\therefore Total $=2+2+4+2=10$

Comment

Generally the students who didn't manufacture an answer in part (i), were successful here.
(e) The base of a solid is an equilateral triangle of side length 10 units.

Cross-sections perpendicular to the base and parallel to one side of the triangle are trapeziums with the longer of the parallel sides in the base as shown.
The lengths of the two parallel sides of the trapezium are in the ratio 2:3 and the height of the trapezium is bounded by a plane inclined at 60° to the base. By considering the volume of a typical slice shown, use integration to find the volume of the solid.

At a distance x units the base of the trapezium is b and the height h, where $h=\sqrt{3} x$.
The upper length of the trapezium is $\frac{2}{3} b$.
The height of the base equilateral triangle is $5 \sqrt{3}$ units (Pythagoras' Theorem).

x	0	$5 \sqrt{3}$
b	0	10

By similarity, $b=\frac{10}{5 \sqrt{3}} x=\frac{2}{\sqrt{3}} x$.

The volume of the slice

$$
\begin{aligned}
\Delta V & \doteqdot\left(\frac{b+\frac{2}{3} b}{2}\right) h \Delta x \\
& =\frac{5}{6} b h \Delta x \\
& =\frac{5}{6} \times \frac{2}{\sqrt{3}} x \times \sqrt{3} x \Delta x \\
& =\frac{5}{3} x^{2} \Delta x
\end{aligned}
$$

(e) (continued)

The volume of the pyramid:

$$
\begin{aligned}
V & =\frac{5}{3} \int_{0}^{5 \sqrt{3}} x^{2} d x \\
& =\frac{5}{3}\left[\frac{1}{3} x^{3}\right]_{0}^{5 \sqrt{3}} \\
& =\frac{5}{9} \times(5 \sqrt{3})^{3} \\
& =\frac{5}{9} \times 125 \times 3 \sqrt{3} \\
& =\frac{625 \sqrt{3}}{3} \mathrm{cu}
\end{aligned}
$$

Comment

On the whole this was not done very well.
For those using the similarity approach, do NOT do a full similarity proof. Just give the relevant TLA. The most common errors:

1. Getting the cross-section wrong in assuming the inclination of a side (non-parallel) of the trapezium to the base being 60°.
2. Using the same pronumeral for the sides of the trapezium as well as for the variable of integration and not making any adjustments i.e. calling the bottom $3 x$ and the top $2 x$ and then integrating for $x: 0 \sim 5 \sqrt{3}$ (or worse $x: 0 \sim 10$)
3. Integrating along the side of the equilateral triangle (base) i.e. $x: 0 \sim 10$
$x 2$ TRIAL
Question 16 .
(a) Given $S_{n}(x)=e^{x^{3}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{3}}\right) ; x \geqslant 1$.
(1)

$$
\begin{aligned}
S_{1}(x) & =e^{x^{3}} \cdot-3 x^{2}-e^{-x^{3}} \\
& =e^{0} \cdot-3 x^{2} \\
& =-3 x^{2}! \\
S_{2}(x) & =e^{x^{3}} \frac{d^{2}}{d x^{2}}\left(e^{-x^{3}}\right) \\
& =e^{x^{3}} \cdot \frac{d}{d x} \cdot \frac{d}{d x}\left(e^{-x^{3}}\right) \\
& =e^{x^{3}} \cdot \frac{d}{d x}\left[e^{-x^{3}}-3 x^{2}\right] \\
& =e^{x^{3}}\left[-6 x e^{-x^{3}}+-3 x^{2} e^{-x^{3}} \times-3 x^{2}\right] \\
& =e^{x^{3}}\left[e^{-x^{3}}\left[-6 x+9 x^{4}\right]\right] \\
& =e^{0}\left(9 x^{4}-6 x\right) \\
& \neq 9 x^{4}-6 x!
\end{aligned}
$$

Comurat . ill done. necessary for the rect of the question.
(ii) StepI dere in (1).

Steht asome $S_{12}(x)$ is true ie. $\quad e^{x^{3}} \cdot \frac{d^{k}}{d x^{2}}\left(e^{-x^{3}}\right)=P(x)$; where Polyromial

Steh III R.T.P.

$$
\begin{aligned}
& \text { Q.T.P. } \\
& S_{k+1}(x)=e^{x^{3}} \cdot \frac{d^{k+1}}{d x^{k+1}}\left(e^{-x^{3}}\right)=\varphi(x) \\
& \text { where } \varphi(x) \text { is }
\end{aligned}
$$

retere $P(x)$ is a Polynomal.

$$
\begin{aligned}
\text { how hHS } & =S_{k+1}(x) \\
& =e^{x^{3}} \cdot \frac{d}{d x}\left[\frac{d^{k}}{d x} \cdot\left(e^{-x^{3}}\right)\right] \\
& =e^{x^{3}} \cdot \frac{d}{d x}\left[\frac{\rho_{a 3}}{e^{x^{3}}}\right] \text { Inam de } \\
& =e^{x^{3}} \cdot\left[\frac{e^{x^{3}} \cdot P^{\prime}(x)-P(x) \cdot 3 x^{2} e^{x^{3}}}{\left(e^{x^{3}}\right)^{2}}\right] \\
& =\frac{\left(e^{x^{3}}\right)^{2}\left[P^{\prime}(x)-3 x^{2} P(x)\right]}{\left(e^{x^{3}}\right)^{2} \quad \text { cleauly }} \\
& =P^{\prime}(x)-3 x^{2} P(x) \quad \text { a } \\
& =P(x) \\
& =R H S
\end{aligned}
$$

STEPI By the Rinciple of mactematical Induction, the statemeat is true for $n \geqslant$!.

Comment. Proved difficult for s racy Students.

The stat mimolding the quotient rule war the issue for mont.
(III) deg $2 n$ and leading co-efficiont ans $(-3)^{n}$

COMMEnt a few errors here.
(b)

$$
\left.\begin{array}{rl}
\left(\Lambda \frac{d v}{d t}\right. & =-k\left(v^{2}-p^{2}\right) \\
\frac{d t}{d v} & =\frac{-1}{k(v-p)(v+p)} \\
& =-\frac{1}{k \cdot}\left[\frac{A}{v-p}+\frac{B}{v+p}\right] \\
& =-\frac{1}{k}\left[\frac{1}{2 p}\right. \\
v-p
\end{array} \frac{-\frac{1}{2 p}}{v+p}\right] \quad \text { (This seed n } \quad \text { the season) }
$$

now woden $t=0 \sim=v_{0}$ Gays

$$
\begin{aligned}
& t=-\frac{1}{2 p k} \ln \frac{v-p}{v+p}+c \\
& 0=-\frac{1}{2 p k} \ln \frac{v_{0}-p}{v_{0}+p}+c \\
& C=\frac{1}{2 p k} \ln D
\end{aligned}
$$

(ln $\frac{v_{0}-p}{r_{0}+p}$ is a constant)

$$
\begin{aligned}
& \therefore \quad A=\frac{-1}{2 p^{2}} . \ln \frac{\nu-p}{\nu+p}+\frac{1}{2 p^{2}} D \\
& -\partial p a t=\ln \left(\frac{\nu-p}{v \tau p}\right)+D . \\
& \ln \frac{\nu-p}{\sim+p}=e^{-2 a k t} \times e^{-D} \\
& \ln \left(\frac{v-p}{v r p}\right)=A e^{-2 p k t} \text { (ishene } \\
& e^{-D}=A \text {) } \\
& \therefore \frac{v-p}{v-p}=A e^{-2 p k t} \\
& \sim-p=(v+p) A e^{-2 p h t} \\
& v\left(1-A e^{-2 p k t}\right)=P\left(A e^{-2 p k t}+1\right) \\
& v=P\left(\frac{1+A e^{-2 p \overline{R t}}}{1-A e^{-2 p k t}}\right)
\end{aligned}
$$

Conubme Snary were (assequied) ' A ' and suerely sivented it along the way mithsut proper esplawation.
(1)

$$
\begin{aligned}
& 10=P\left(\frac{1+A}{1-A}\right)(\text { wher } A=0 \\
& \left.e^{-2 r k \cdot 0}=1\right) \\
& 10(1-A)=P(1+A) \\
& 10-10 A=P+P A . \\
& A(P+10)=10-P \\
& A=\frac{10-P}{10+P} \quad \text { Commber }
\end{aligned}
$$

(ili)

$$
\begin{aligned}
A & =\frac{10-5}{10+5} \\
& =\frac{1}{3}
\end{aligned}
$$

Commiser. Cacy and well dave.

$$
\begin{aligned}
& \therefore=\sqrt{v\left(\frac{1+\frac{1}{3} e^{-10 k t}}{\left(1-\frac{1}{3} e^{-10 k t}\right.}\right)} \\
& \text { Commisht } \\
& \text { wheredat. }
\end{aligned}
$$

(IV)

$$
\begin{aligned}
\cos t & \rightarrow \infty \\
\sim & \left.\rightarrow 5 \frac{\left(1+\frac{1}{3} \times 0\right)}{\left(1-\frac{1}{3} \times 0\right.}\right) \\
& =5 \cdot m / 0
\end{aligned}
$$

Commisnt.
Cowed the dove uring

$$
\begin{aligned}
\frac{d v}{d t} \rightarrow 0 ; \quad ; \quad & \rightarrow P \\
& =5 \mathrm{~m} / \mathrm{o} .
\end{aligned}
$$

(c) Yaien $f(x)=e^{x}\left(1+x^{2}\right)$
(1

$$
\begin{aligned}
f^{\prime}(x) & =e^{x}(2 x)+e^{x}\left(1+x^{2}\right) \\
& =e^{x}\left(1+2 x+x^{2}\right) \\
& =e^{x}(1+x)^{2} \\
& \geqslant 0 .
\end{aligned}
$$

Because $e^{x}\left(1+x^{2}\right)$ is increating

$$
e^{x}\left(1+x^{2}\right)=12 .
$$

as one solutiou if $R>0$ ano wore if $k \leqslant 0$. Since $f(x)>0$ for accx.

Coumsst moret were able to satiapactonily tandle then queation.
(II). Giver $\left(e^{x}-1\right)-k \tan ^{-1} x=0$.

Let $F(x)=\left(e^{x}-1\right)-k \tan ^{-1} x=0$
hear $F^{\prime}(x)=e^{2}-\frac{k_{2}}{1+x^{2}}=0$.
ie $e^{x}=\frac{k}{1+x^{2}}$.

$$
e^{x}\left(1+x^{2}\right)=1 .
$$

The inplication ptow (1) is chat. $F^{\prime}(x)=0$ how he wort for $k>0$. ie. $F(x)$ has ore at roint
awo $F(0)=0 \therefore F(x)$ has a sortat $x=0$
and fraw (A) $\left(e^{x}-1=k \tan ^{-1} x\right.$.

We ksew -hat.

$$
\begin{equation*}
\left.-\frac{\pi}{2}<\tan ^{-1} x<\frac{\pi}{2} \right\rvert\, \tag{c}
\end{equation*}
$$

Coxcider $0<k<\frac{2}{\pi}$
ie $0<k \tan ^{-1} x<1$

$$
\begin{aligned}
\therefore 0 & <e^{x}-1<1 \quad \text { Aran (3) } \\
1 & <e^{x}<2 \quad \therefore \quad \text { a value of } x
\end{aligned}
$$ exints.

hence a soot
in $(1,2)$ interval
Consuder

$$
\begin{align*}
& \left|\frac{2<k<1}{\pi}\right| \\
& -1<k \operatorname{ten}^{-1} x<\frac{\pi}{2} \\
& 0<e^{x}<\frac{\pi}{2}+1 \tag{B}\\
& -\infty<x<\ln \left(\frac{\pi}{2}+1\right)
\end{align*}
$$

This interval contain the root
$x=0$.
\therefore There are tho floors. ore at $x=0$ and the ocker to the right of the origin
between 0 and Mra. (depends时多)
\therefore Ore et. point and two sooty

Comment
A very disfieute quentiai to get exactly cerement.
vase used diagrams, suichant fully justifying their.

The key wat (13) which made the question much easier.

