Sydney Grammar School

FORM VI

MATHEMATICS EXTENSION 1

Friday 17th August 2018

General Instructions

- Reading time - 5 minutes
- Writing time - 2 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 70 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet
- Reference Sheet

Examiner

- Candidature - 122 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The point R divides the interval from $A(-4,1)$ to $B(2,7)$ internally in the ratio $5: 1$. What are the coordinates of R ?
(A) $(6,1)$
(B) $(1,6)$
(C) $(-3,2)$
(D) $(2,-3)$

QUESTION TWO

Which of the following diagrams could represent the graph of $y=(x+3)^{2}(2-x)^{3}$?
(A)

(C)

(B)

(D)

QUESTION THREE

What is the acute angle between the lines $3 x+y+2=0$ and $y=2+x$, correct to the nearest degree?
(A) 64°
(B) 27°
(C) 45°
(D) 63°

QUESTION FOUR

What is the derivative of $\sin ^{-1} 2 x$?
(A) $\frac{2}{\sqrt{1-4 x^{2}}}$
(B) $\frac{1}{\sqrt{4-x^{2}}}$
(C) $\frac{-2}{\sqrt{1-4 x^{2}}}$
(D) $\frac{2}{1+4 x^{2}}$

QUESTION FIVE

A particle is moving along the x-axis. Its velocity $v \mathrm{~ms}^{-1}$ is given by $v=\sqrt{6 x-x^{3}}$. What is the acceleration of the particle when $x=2$?
(A) $2 \mathrm{~ms}^{-2}$
(B) $-\frac{3}{2} \mathrm{~ms}^{-2}$
(C) $-6 \mathrm{~ms}^{-2}$
(D) $-3 \mathrm{~ms}^{-2}$

QUESTION SIX

What is the value of k given that $\int_{0}^{k} \frac{d x}{9+x^{2}}=\frac{\pi}{9}$?
(A) $\frac{1}{\sqrt{3}}$
(B) $\sqrt{3}$
(C) $3 \sqrt{3}$
(D) 3

QUESTION SEVEN

A function is defined by $f(x)=(x+2)^{2}+1$ for $x \leq-2$. What is the inverse function of $f(x)$?
(A) $f^{-1}(x)=-2 \pm \sqrt{x-1}$
(B) $f^{-1}(x)=-2+\sqrt{x-1}$
(C) $f^{-1}(x)=-2-\sqrt{x-1}$
(D) $f^{-1}(x)=\frac{1}{(x+2)^{2}+1}$

QUESTION EIGHT

A parabola can be represented by the parametric equations $x=6 t, y=-3 t^{2}+3$. What are the coordinates of the focus?
(A) $(0,3)$
(B) $(0,0)$
(C) $(0,-3)$
(D) $(0,-6)$
\qquad

QUESTION NINE

The diagram above shows a circle through A, B and C, with centre O. Tangents at A and C intersect at T, and $\angle A B C=\theta$.

What is the size of $\angle A T C$ in terms of θ ?
(A) $2 \theta-180^{\circ}$
(B) $180^{\circ}-\theta$
(C) $\theta-90^{\circ}$
(D) $2 \theta-90^{\circ}$

QUESTION TEN

A polynomial is defined by $P(x)=a x^{4}+2 b x^{3}+4 c x^{2}+8 d x+16 e$ for constants a, b, c, d and e. It is known that $x-2$ is a factor of $P(x)$, and when $P(x)$ is divided by $x+2$ the remainder is 32 .

What is the value of $b+d$?
(A) 1
(B) -1
(C) 16
(D) -16

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Factorise $8 x^{3}-y^{3}$.
(b) Find $\int \frac{d x}{\sqrt{9-x^{2}}}$.
(c) Find $\int \cos ^{2} x d x$.
(d) The equation $3 x^{3}-18 x^{2}-25 x+15=0$ has roots α, β and γ.
(i) Write down the values of $\alpha+\beta+\gamma$ and $\alpha \beta \gamma$.
(ii) Find the value of $\frac{1}{\alpha \beta}+\frac{1}{\alpha \gamma}+\frac{1}{\beta \gamma}$.
(e) Solve the inequation $\frac{6}{x+2} \leq 1$.
(f) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos x(1-\sin x)^{2} d x$ using the substitution $u=1-\sin x$.
(g) Find the term independent of x in the expansion of $\left(3 x^{2}-\frac{2}{x}\right)^{9}$.

QUESTION TWELVE (15 marks) Use a separate writing booklet. Marks
(a) (i) State the domain and range of $y=\sin ^{-1}(x+1)+\frac{\pi}{2}$.
(ii) Hence sketch the graph of $y=\sin ^{-1}(x+1)+\frac{\pi}{2}$.
(b) (i) Show that $\operatorname{cosec} 2 \alpha-\cot 2 \alpha=\tan \alpha$.
(ii) Hence find the exact value of $\tan 15^{\circ}$.
(c) A continuous function is defined by $f(x)=\tan \frac{x}{2}-x$ for $-\pi<x<\pi$.
(i) Show that $f(x)$ has a root between $x=2$ and $x=3$.
(ii) Taking $x=2.5$ as an initial approximation, use Newton's method once to find a better approximation of the root. Give the value of your approximation correct to two decimal places.
(d)

The diagram above shows the cyclic quadrilateral $A B C D$, such that $A C$ bisects $\angle B A D$. The line $X Y$ is a tangent to the circle at C.

Show that $B D$ is parallel to $X Y$.

QUESTION TWELVE (Continued)
(e)

The diagram above shows a square pyramid with base $P Q R S$. The centre of the base is the point B, and the perpendicular height $A B$ of the pyramid is $h \mathrm{~m}$. The side length of the square base is $x \mathrm{~m}$, and the slant height $A C$ of the pyramid makes an angle of 60° to the vertical, as shown in the diagram.
(i) Show that $x=2 h \sqrt{3}$.
(ii) Hence show that $h=\left(\frac{V}{4}\right)^{\frac{1}{3}}$, where V is the volume of the pyramid in cubic metres.
(iii) The pyramid is initially empty, and is filled with water at a constant rate of $0.5 \mathrm{~m}^{3} / \mathrm{min}$. Find that rate at which the height of the water is increasing after it has been filled for 8 minutes.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet. Marks

Abby and Bob are bushwalking on flat ground. They can both see the same mountain, which has a height of 200 m . From Abby's position A, the mountain has a bearing of $035^{\circ} \mathrm{T}$, and the top of the mountain has an angle of elevation of 18°. From Bob's position B, the mountain has a bearing of $335^{\circ} \mathrm{T}$, and the top of the mountain has an angle of elevation of 15°. Let the base and the top of the mountain be the points X and Y respectively.
(i) Show that $\angle A X B=60^{\circ}$.
(ii) Find the distance from Abby to Bob. Give your answer correct to the nearest metre.
(b) The roots of $x^{3}+9 x^{2}+k x-216=0$ form a geometric progression. Find the roots.
(c) A particle moves such that its displacement in metres after t seconds is given by $x=\sqrt{3} \sin 2 t-\cos 2 t-1$.
(i) Prove that the particle is moving in simple harmonic motion by showing that $\ddot{x}=-4(x+1)$.
(ii) Find the first time that the particle is the furthest from the origin.

QUESTION THIRTEEN (Continued)
(d)

The diagram above shows the parabola $x^{2}=4 a y$ with a tangent at the point $P\left(2 a p, a p^{2}\right)$ and a normal at the point $Q\left(2 a q, a q^{2}\right)$. The vertical line through P has been constructed, and it intersects the normal through Q at N. The points U and V lie on the tangent to the parabola at P, as shown.

The chord $P Q$ has equation $x(p+q)-2 y-2 a p q=0$. (Do NOT prove this.)
(i) Find the gradient of the tangent to the parabola at P.
(ii) Show that if $P Q$ is a focal chord, then the normal to the parabola at Q is parallel to the tangent to the parabola at P.
(iii) The circle through the points N, Q and P is constructed. Use the reflection property of the parabola (that is, that $\angle Q P V=\angle N P U$) to show that if $P Q$ is a focal chord, the parabola and the circle have a common tangent at P.

QUESTION FOURTEEN (15 marks) Use a separate writing booklet. Marks
(a)

A liquid is heated to B degrees Celsius before being poured into two different containers, container one and container two. The containers are then placed in a room that is A degrees Celsius, where $A<B$. The temperature H of each liquid after t minutes is graphed above. The temperatures of the liquids in container one and container two after t minutes are given by

$$
\begin{aligned}
& H_{1}=A+(B-A) e^{-k_{1} t} \\
& H_{2}=A+(B-A) e^{-k_{2} t}
\end{aligned}
$$

respectively, where k_{1} and k_{2} are positive constants.
It is known that it takes the liquid in container two twice as long to cool to a given temperature as it does for the liquid in container one.
(i) Show that $k_{1}=2 k_{2}$.
(ii) Find the largest difference in temperatures between the liquids in the two containers.
\qquad
QUESTION FOURTEEN (Continued)
(b) Use mathematical induction to show that, for any integer $n \geq 0$,

$$
\lim _{p \rightarrow \infty} \frac{p!}{(p-n)!p^{n}}=1
$$

(c)

The diagram above shows the points A and B on the curve $y=\frac{1}{x}$ with x-coordinates 1 and $\left(1+\frac{1}{n}\right)$ respectively, where $n>0$.
(i) By referring to the diagram, explain why

$$
\frac{1}{n+1} \leq \int_{1}^{1+\frac{1}{n}} \frac{d x}{x} \leq \frac{1}{n}
$$

(ii) Prove that

$$
e^{\frac{n}{n+1}} \leq\left(1+\frac{1}{n}\right)^{n} \leq e
$$

(iii) Deduce that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.
(d) Let $a_{n, k}$ be the term containing x^{k} in the expansion of $(1+x)^{n}$, where $0<x<1$.

It is known that $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{n, k}=\sum_{k=0}^{\infty} \lim _{n \rightarrow \infty} a_{n, k}$.
Use your answers to (b) and (c)(iii) to show that

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots
$$

Extension 1 Maths - Trial 2018
Muttiple Choice
(1)

$$
\begin{aligned}
& A(-4,1), B(2,7) \\
& x=\frac{5: 1}{6} \\
& \\
& =1
\end{aligned}
$$

(2) C
(3)

$$
\begin{aligned}
3 x+y+2 & =0 \quad y=2+x \\
m_{1}=-3 & \quad m_{2}=1 \\
\tan \theta & =\left|\frac{-3-1}{1-(-3) \times 1}\right| \\
& =\left|\frac{-4}{2}\right| \\
\theta & =\tan ^{-1} 2 \\
& =63^{\circ} \quad \Rightarrow D
\end{aligned}
$$

(4)

$$
\begin{aligned}
\frac{d}{d x}\left(\sin ^{-1} 2 x\right) & =\frac{1}{\sqrt{1-(2 x)^{2}}} \times 2 \\
& =\frac{2}{\sqrt{1-4 x^{2}}} \Rightarrow A
\end{aligned}
$$

(5)

$$
\begin{gathered}
N=\sqrt{6 x-x^{3}} \\
\frac{1}{2} V^{2}=\frac{1}{2}\left(6 x-x^{3}\right) \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{1}{2}\left(6-3 x^{2}\right)
\end{gathered}
$$

When $x=2: \quad \vec{x}=\frac{1}{2}\left(6-3 \times 2^{2}\right)$

$$
=-3 m s^{-2} \quad \Rightarrow D
$$

(6)

$$
\begin{aligned}
\int_{0}^{k} \frac{d x}{9+x^{2}} & =\left[\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)\right]_{0}^{k} \\
& =\frac{1}{3}\left(\tan ^{-1} \frac{k}{3}-0\right) \\
\frac{1}{3} \tan ^{-1} \frac{k}{3} & =\frac{\pi}{9} \\
\tan ^{-1} \frac{k}{3} & =\frac{\pi}{3} \\
\frac{k}{3} & =\tan ^{\frac{\pi}{3}} \\
& =\sqrt{3} \\
\therefore k & =3 \sqrt{3} \\
& \Rightarrow c
\end{aligned}
$$

(7)

$$
\begin{aligned}
& x=(y+2)^{2}+1 \\
& (y+2)^{2}=x-1 \\
& y+2=-\sqrt{x-1} \quad \text { since range will be } y \leq-2 \\
& y=-2-\sqrt{x-1} \\
& \Rightarrow c
\end{aligned}
$$

(8)

$$
\begin{aligned}
& x=6 t, \quad y=-3 t^{2}+3 \\
& t=\frac{x}{6} \quad \therefore \quad y=-3\left(\frac{x}{6}\right)^{2}+3 \\
& y=-\frac{x^{2}}{12}+3 \\
& 12 y=-x^{2}+36 \\
& x^{2}=-12(y-3)
\end{aligned}
$$

\therefore Focal length $=3$, shifted up by 3 , concave down. \therefore Focus is $(0,0) \Rightarrow B$

Alternatively: $x^{2}=4 a y:\left(2 a t, a t^{2}\right)$

$$
a=3 \text { gives }\left(6 t, 3 t^{2}\right)
$$

So $\left(6 t,-3 t^{2}+3\right)$ is the standard parabola with vertex $(0,0)$ and focus $(0,3)$ reflected in y-axis r shifted up by
(9) Reflex $\angle A O C=2 \theta$ (angle at center $=2 x$ angle at circumference)

$$
\therefore \angle A O C=360^{\circ}-2 \theta^{\circ} \text { (angles in a revolution) }
$$

$\angle O A T=\angle O C T=90^{\circ} \quad$ (angle between radius and tangent)
By angle sum of ATCO:

$$
\begin{gathered}
\angle A T C+90^{\circ}+90^{\circ}+360^{\circ}-2 \theta=360^{\circ} \\
\angle A T C \\
=2 \theta-180^{\circ} \\
\Rightarrow A
\end{gathered}
$$

(10)

$$
\begin{align*}
& P(2)= 0 \\
& \therefore \quad 16 a+16 b+16 c+16 d+16 e=0 \\
& a+b+c+d+e=0 \tag{1}\\
& P(-2)= 32: \\
& 16 a-16 b+16 c-16 d+16 e=32 \\
& a-b+c-d+e=2 \tag{2}
\end{align*}
$$

(1) + (2):

$$
\begin{gathered}
2 a+2 c+2 e=2 \\
a+c+e=1
\end{gathered}
$$

sub. into (1): $\quad b+d+(a+c+e)=0$

$$
\begin{gathered}
\therefore b+d=-1 \\
\Rightarrow B
\end{gathered}
$$

Question 11
(a) $(2 x-y)\left(4 x^{2}+2 x y+y^{2}\right)$
(b) $\int \frac{d x}{\sqrt{9-x^{2}}}=\sin ^{-1}\left(\frac{x}{3}\right)+c$
(c) $\int \cos ^{2} x d x=\frac{1}{2} \int(1+\cos 2 x) d x$

$$
\begin{aligned}
& =\frac{1}{2}\left[x+\frac{1}{2} \sin 2 x\right]+c \\
& =\frac{1}{2} x+\frac{1}{4} \sin 2 x+c
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
\alpha+\beta+\gamma & =-\frac{18}{3} \\
& =6 \\
\alpha \beta \gamma & =-\frac{15}{3} \\
& =-5
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{1}{\alpha \beta}+\frac{1}{\alpha \gamma}+\frac{1}{\beta \gamma} & =\frac{\alpha+\beta+\gamma}{\alpha \beta \gamma} \\
& =-\frac{6}{5}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \frac{6}{x+2} \leqslant 1 \quad x \neq-2 \\
& 6(x+2) \leqslant(x+2)^{2} \\
& (x+2)^{2}-6(x+2) \geqslant 0 \\
& (x+2)[(x+2)-6] \geqslant 0 \\
& (x+2)(x-4) \geqslant 0 \\
& -2
\end{aligned}
$$

(f)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \cos x(1-\sin x)^{2} d x \\
& u=1-\sin x \\
& =-\int_{0}^{\frac{\pi}{2}}-\cos x(1-\sin x)^{2} d x \\
& d u=-\cos x d x \\
& x=0, u=1 \\
& =-\int_{1}^{0} u^{2} d u \\
& x=\frac{\pi}{2}, \quad u=0 \\
& =\int_{0}^{1} u^{2} d u \\
& =\left[\frac{u^{3}}{3}\right]_{0}^{1} \\
& =\frac{1}{3}
\end{aligned}
$$

(g) General term: ${ }^{a} C_{r}\left(3 x^{2}\right)^{r}\left(-\frac{2}{x}\right)^{a-r}$

$$
\begin{aligned}
& ={ }^{9} c_{r} 3^{r}(-2)^{9-r} x^{2 r} x^{r-9} \\
& ={ }^{9} c_{r} 3^{r}(-2)^{9-r} x^{3 r-9}
\end{aligned}
$$

Constant when $3 r-9=0$

$$
r=3
$$

\therefore Constant term is ${ }^{9} C_{3} 3^{3}(-2)^{6}$

$$
=145152
$$

Question 12
(a)(i) Domain: $-2 \leqslant x \leqslant 0$

Range: $0 \leqslant y \leqslant \pi$
(ii)

(b)

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
& \operatorname{cosec} 2 \alpha-\cot 2 \alpha=\tan \alpha \\
& \text { LHS }=\operatorname{cosec} 2 \alpha-\cot 2 \alpha \\
&=\frac{1}{\sin 2 \alpha}-\frac{1}{\tan 2 \alpha} \\
&=\frac{1}{2 \sin \alpha \cos \alpha}-\frac{1-\tan ^{2} \alpha}{2 \tan \alpha} \\
&=\frac{1}{2 \sin \alpha \cos \alpha}-\frac{\left(1-\tan ^{2} \alpha\right) \cos ^{2} \alpha}{2 \sin \alpha \cos \alpha} \\
&=\frac{1-\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)}{2 \sin \alpha \cos \alpha} \\
&=\frac{1-\cos ^{2} \alpha+\sin ^{2} \alpha}{2 \sin \alpha \cos \alpha} \\
&=\frac{2 \sin \alpha}{2 \sin \alpha \cos \alpha} \\
&=\frac{\tan \alpha}{} \\
&=\text { RHS }
\end{aligned} \text { }
\end{aligned}
$$

Alternatively: Let $t=\tan \alpha$

$$
\begin{aligned}
\text { then } \sin 2 \alpha & =\frac{2 t}{1+t^{2}}, \tan \alpha=\frac{2 t}{1-t^{2}} \\
\therefore \operatorname{cosec} 2 \alpha-\cot 2 \alpha & =\frac{1+t^{2}}{2 t}-\frac{1-t^{2}}{2 t} \\
& =\frac{2 t^{2}}{2 t} \\
& =t \\
& =\tan \alpha
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\tan 15^{\circ} & =\operatorname{cosec} 30^{\circ}-\cot 30^{\circ} \\
& =\frac{1}{\sin 30^{\circ}}-\frac{1}{\tan 30^{\circ}} \\
& =2-\sqrt{3}
\end{aligned}
$$

(c)

$$
\text { (i) } \begin{aligned}
f(2) & =\tan \left(\frac{2}{2}\right)-2 \\
& \doteqdot-0.44 \cdots<0 \\
f(3) & =\tan \left(\frac{3}{2}\right)-3 \\
& \doteqdot 11 \cdot 10 \ldots>0
\end{aligned}
$$

Since $f(x)$ changes sigh between $x=2$ and $x=3$, and $f(x)$ is continuous over $2 \leqslant x \leqslant 3$
(ii)

$$
\begin{aligned}
f(x) & =\tan \left(\frac{x}{2}\right)-x \\
f^{\prime}(x) & =\frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right)-1 \\
x_{2} & =2.5-\frac{\tan \left(\frac{2.5}{2}\right)-2.5}{\frac{1}{2 \cos ^{2}\left(\frac{2.5}{2}\right)}-1} \\
& \doteqdot 2.37 \quad(2 \text { decimal places })
\end{aligned}
$$

(d) $\angle D A C=\angle D B C$ (angles on circumference subtended by $\operatorname{arc} D C$)
$\angle B A C=\angle B C X$ (angle between tangent and chord $=$ angle in alternate segment)
Since $\angle D A C=\angle B A C$,

$$
\angle D B C=\angle B C X
$$

$\because D B \| Y X$ (alternate angles are equal)
(e) (i)

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{\frac{1}{2} x}{n} \\
\sqrt{3} & =\frac{\frac{1}{2} x}{h} \\
x & =2 h \sqrt{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
V & =\frac{1}{3} x^{2} h \\
& =\frac{1}{3}(2 h \sqrt{3})^{2} \times h \\
V & =4 h^{3} \\
h^{3} & =\frac{1}{4} V \\
h & =\left(\frac{1}{4} v\right)^{\frac{1}{3}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{d h}{d V} \times \frac{d V}{d t} \\
\frac{d V}{d t} & =0.5 \\
\frac{d h}{d V} & =\frac{1}{3}\left(\frac{1}{4} V\right)^{-\frac{2}{3}} \times \frac{1}{4} \\
& =\frac{1}{12\left(\frac{1}{4} v\right)^{2 / 3}}
\end{aligned}
$$

After $8 \mathrm{mins}, \quad V=8 \times 0.5=4$

$$
\therefore \frac{d h}{d t}=\frac{1}{12(1)^{2 / 3}} \times 0.5=\frac{1}{24} \mathrm{~m} / \mathrm{min}
$$

Question 13
(a) (i)

$$
\begin{aligned}
\angle A K B & =35^{\circ}+25^{\circ} \\
& =60^{\circ}
\end{aligned}
$$

(ii)

$$
\left.\begin{array}{rl}
\tan 18^{\circ} & =\frac{200}{A x} \\
A x & =\frac{200}{\tan 18^{\circ}} \\
\text { Similarly } B X=\frac{200}{\tan 15^{\circ}}
\end{array}\right\} \quad(\text { (both })
$$

By cosine rule:

$$
\begin{aligned}
A B^{2} & =\left(\frac{200}{\tan 18^{\circ}}\right)^{2}+\left(\frac{200}{\tan 15^{\circ}}\right)^{2}-2 \times \frac{200}{\tan 18^{\circ}} \times \frac{200}{\tan 15^{\circ}} \times \cos 60^{\circ} \\
& =476570.71 \ldots \\
A B & \doteqdot 690.34 \\
& =690 \mathrm{~m} \text { (nearest metre) }
\end{aligned}
$$

(b) Let the roots be $\frac{\alpha}{r}, \alpha, \alpha r$

Product of rook: $\frac{\alpha}{r} \times \alpha \times \alpha r=-\frac{216}{1}$

$$
\begin{aligned}
\alpha^{3} & =216 \\
\alpha & =6
\end{aligned}
$$

Sum of roots: $\frac{6}{r}+6+6 r=-\frac{9}{1}$

$$
\begin{aligned}
& \frac{2}{r}+2+2 r=-3 \\
& 2 r^{2}+5 r+2=0 \\
& (2 r+1)(r+2)=0
\end{aligned}
$$

$$
\begin{aligned}
& r=-\frac{1}{2} \text { or } r=-2 \\
& \therefore \text { roots are }-3,6,-12
\end{aligned}
$$

Alternatively:
Let the roots be $\alpha, \alpha r, \alpha r^{2}$
Product of roots: $\alpha \cdot \alpha r \cdot \alpha r^{2}=216$

$$
\begin{aligned}
& \alpha^{3} r^{3}=216 \\
& \alpha r=6
\end{aligned}
$$

Sum of roots:

$$
\begin{array}{r}
\alpha+\alpha r+\alpha r^{2}=-9 \\
\alpha+6+6 r=-9 \\
\alpha+6 r=-15 \tag{*}
\end{array}
$$

Two at a time: $\quad \alpha \cdot \alpha r+\alpha \cdot \alpha r^{2}+\alpha r \cdot \alpha r^{2}=k$

$$
\begin{gathered}
\alpha^{2} r+\alpha^{2} r^{2}+\alpha^{2} r^{3}=k \\
6 \alpha=6: 36+36 r=k \\
6(\alpha+6 r)+36=k \\
6 x-15+36=k \\
k=-54
\end{gathered}
$$

$$
\frac{6 x-15+36}{k=-54} \text { (from } * \text {) }
$$

\therefore Polynomial is $x^{3}+9 x^{2}-54 x-216=0$ with 6 as one root.

$$
\begin{aligned}
& (x-6)\left(x^{2}+15 x+36\right)=0 \\
& (x-6)(x+3)(x+12)=0
\end{aligned}
$$

\therefore roots are $x=-3, x=6, x=-12$
(c) (i)

$$
\begin{aligned}
x & =\sqrt{3} \sin 2 t-\cos 2 t-1 \\
\dot{x} & =2 \sqrt{3} \cos 2 t+2 \sin 2 t \\
\ddot{x} & =-4 \sqrt{3} \sin 2 t+4 \cos 2 t \\
& =-4(\sqrt{3} \sin 2 t-\cos 2 t) \\
& =-4(x+1)
\end{aligned}
$$

Alternatively:

$$
\begin{aligned}
& \text { Let } \sqrt{3} \sin 2 t-\cos 2 t=R \sin (2 t+\alpha) \\
& =R \sin 2 t \cos \alpha+R \cos 2 t \sin \alpha \\
& \Rightarrow \quad R \cos \alpha=\sqrt{3} \\
& R \sin \alpha=-1 \\
& \text { (1) }{ }^{2}+(2)^{2}: \quad R^{2} \cos ^{2} \alpha+R^{2} \sin ^{2} \alpha=(\sqrt{3})^{2}+(-1)^{2} \\
& R^{2}=4 \\
& R=2 \quad \text { taking } R>0 \text {. } \\
& \left.\begin{array}{l}
2 \cos \alpha=\sqrt{3} \\
2 \sin \alpha=-1
\end{array}\right\} \propto \text { 4th quadrant. } \\
& \sin \alpha=-\frac{1}{2} \\
& \alpha=-\frac{\pi}{6} \quad\left(\text { or } \frac{11 \pi}{6}, \ldots\right) \\
& \therefore \quad x=2 \sin \left(2 t-\frac{\pi}{6}\right)-1 \\
& \dot{x}=4 \cos \left(2 t-\frac{\pi}{6}\right) \\
& \ddot{x}=-8 \sin \left(2 t-\frac{\pi}{6}\right) \\
& =-4 \times 2 \sin \left(2 t-\frac{\pi}{6}\right) \\
& =-4(x+1)
\end{aligned}
$$

(ii) Centre of motion: $x=-1$

Furthest from the origin will be in the negative direction, when $\dot{x}=0$:

When $t=0, \quad \dot{x}=+2 \sqrt{3}$
i.e. particle is initially moving in positive direction, so will be "furthest from the origin" the second time that it comes to rest.

$$
\begin{aligned}
& \dot{x}=0: \quad 2 \sqrt{3} \cos 2 t+2 \sin 2 t=0 \\
& \tan 2 t=-\sqrt{3} \\
& 2 t=\pi-\frac{\pi}{3}, 2 \pi-\frac{\pi}{3}, 3 \pi-\frac{\pi}{3}, \ldots \\
&=\frac{2 \pi}{3}, \frac{5 \pi}{3}, \frac{8 \pi}{3}, \ldots \\
& t=\frac{\pi}{3}, \frac{5 \pi}{6}, \frac{4 \pi}{3}, \ldots
\end{aligned}
$$

\therefore particle is furthest from the origin when $t=\frac{5 \pi}{6}$
(d) (i)

$$
\begin{aligned}
y & =\frac{x^{2}}{4 a} \\
y^{\prime} & =\frac{x}{2 a}
\end{aligned}
$$

when $x-2 a p, \quad y^{\prime}=p$
(ii) Similarly, at $Q\left(2 a q, a q^{2}\right), \quad y^{\prime}=q$
$\therefore m$ normal at $Q=-\frac{1}{q}$
If $P Q$ is a focal chord, $(0, a)$ lies on $x(p+q)-2 y-2 a p q=0$

$$
\begin{array}{r}
\therefore-2 a-2 a p q=0 \\
p q=-1 \\
p=-\frac{1}{q}
\end{array}
$$

\therefore tangent at P is parallel to normal at Q.
(iii) From (ii), $Q N \| V U$
$\therefore \angle N P U=L Q N P$ (alternate angles, $Q N \| V U$)
but $\angle Q P V=L N P V \quad$ (reflection property)
$\therefore L Q P V=L Q N P$

$$
\therefore \angle Q P=L Q N P
$$

$\therefore U V$ is a tangent to circle QPN (converse of alternate segment theorem)

Question 14
(a) (i) When $t=t_{0}, H_{1}$ will equal H_{2} when $t=2 t_{0}$

$$
\text { i.e. } \quad \begin{aligned}
A+(B-A) e^{-k_{2} \times 2 t_{0}} & =A+(B-A) e^{-k_{1} t_{0}} \\
e^{-2 k_{1} t_{0}} & =e^{-k_{1} t_{0}} \\
-2 k_{1} t_{0} & =-k_{1} t_{0} \\
k_{1} & =2 k_{2}
\end{aligned}
$$

(ii) Difference in temperatures $=H_{2}-H_{1}$,

$$
\begin{aligned}
& =A+(B-A) e^{-k_{2} t}-\left(A+(B-A) e^{-k_{2} t}\right) \\
& =(B-A)\left(e^{-k_{2} t}-e^{-k_{1} t}\right) \\
& =(B-A)\left(e^{-k_{2} t}-e^{-2 k_{2} t}\right)
\end{aligned}
$$

Method 1: Let $M=H_{2}-H_{1}$

$$
\frac{d M}{d t}=(B-A)\left(-k_{2} e^{-k_{2} t}+2 k_{2} e^{-2 k_{2} t}\right)
$$

Let $\frac{d M}{d t}=0$:

$$
\begin{gathered}
-k_{2} e^{-k_{2} t}+2 k_{2} e^{-2 k_{2} t}=0 \\
\frac{2}{e^{2 k_{2} t}}=\frac{1}{e^{k_{2} t}} \\
2=e^{k_{2} t} \\
k_{2} t=\ln 2 \\
t=\frac{1}{k_{2}} \ln 2 \\
\frac{d^{2} M}{d t^{2}}=(B-A)\left(k_{2}^{2} e^{-k_{2} t}-4 k_{2}^{2} e^{-2 k_{2} t}\right)
\end{gathered}
$$

when $t=\frac{1}{k_{2}} \ln 2$:

$$
\begin{aligned}
\frac{d^{2} M}{d t^{2}} & =(B-A) \times k_{2}^{2}\left(e^{-k_{2} \cdot \frac{1}{k_{2}} \ln 2}-4 e^{-2 k_{2} \cdot \frac{1}{k_{2}} \ln 2}\right) \\
& =(B-A) \cdot k_{2}^{2}\left(e^{-\ln 2}-4 e^{-2 \ln 2}\right) \\
& =(B-A) \cdot k_{2}^{2}\left(\frac{1}{2}-\frac{1}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(B-A) \cdot k_{2}^{2} \times-\frac{1}{2} \\
& <0 \text { since } B>A \text { and } k_{2}^{2}>0 .
\end{aligned}
$$

\therefore Max, occurs when $t=\frac{1}{R_{2}} \ln 2$.

$$
\begin{aligned}
\therefore \text { Max. difference } & =(B-A)\left(e^{-k_{2} \times \frac{1}{k_{2}} \ln 2}-e^{-2 k_{2} \times \frac{1}{k_{2}} \ln 2}\right) \\
& =(B-A)\left(\frac{1}{2}-\frac{1}{4}\right) \\
& =\frac{B-A}{4}{ }^{0}(
\end{aligned}
$$

Method 2:

$$
H_{2}-H_{1}=(B-A)\left(e^{-k_{2} t}-e^{-2 k_{2} t}\right)
$$

let $x=e^{-k_{2} t:}$

$$
H_{2}-H_{1}=(B-A)\left(x-x^{2}\right)
$$

$B-A$ is constant, and $y=x-x^{2}$ represents a
concave down parabola, with local max. at

$$
\begin{array}{rlrl}
x & =-\frac{1}{2 x-1} & y & =\frac{1}{2}-\left(\frac{1}{2}\right)^{2} \\
& =\frac{1}{2}, & & =\frac{1}{2}-\frac{1}{4} \\
& =\frac{1}{4}
\end{array}
$$

Check: $x=\frac{1}{2}$ gives $e^{-k_{2} t}=\frac{1}{2}$

$$
\begin{aligned}
-k_{2} t & =\ln \left(\frac{1}{2}\right) \\
& =-\ln 2
\end{aligned}
$$

$$
t=\frac{1}{k_{2}} \ln 2 \text { i.e. a valid result }
$$ for t.

$$
\begin{aligned}
\therefore \text { Max. difference } & =(B-A) \times \frac{1}{4} \\
& =\frac{B-A}{4}{ }^{\circ} C
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Step 1: } n & =0 \\
\text { LHS } & =\lim _{p \rightarrow \infty} \frac{p!}{(p-0)!\rho^{0}} \\
& =\lim _{p \rightarrow \infty} \frac{p!}{p!} \\
& =\lim _{p \rightarrow \infty} 1 \\
& =1 \\
& =\text { RHS }
\end{aligned}
$$

\therefore true for $n=0$.
Step 2: Assume true for $n=k$.

$$
\text { i.e. } \lim _{p \rightarrow \infty} \frac{p!}{(p-k)!p^{k}}=1
$$

Step 3: Prove true for $n=k+1$
To prove: $\lim _{p \rightarrow \infty} \frac{p!}{(p-(k+1))!p^{k+1}}=1$

$$
\begin{aligned}
\text { LAS } & =\lim _{p \rightarrow \infty} \frac{p!}{(p-k-1)!p^{k+1}} \frac{p!}{(p-k-1)!p^{k+1}}=1 \\
& =\lim _{p \rightarrow \infty} \frac{p!(p-k)}{(p-k)!p^{k+1}} \\
& =\lim _{p \rightarrow \infty}\left[\frac{p!}{(p-k)!p^{k}} \times \frac{p-k}{p}\right] \\
& =\lim _{p \rightarrow \infty} \frac{p!}{(p-k)!p^{k}} \times \lim _{p \rightarrow \infty} \frac{p-k}{p} \quad \text { since both limits } \\
& =1 \times \lim _{p \rightarrow \infty}\left(1-\frac{k}{p}\right) \quad \text { ane defined. } \\
& =1 \times(1-0) \\
& =1
\end{aligned}
$$

$=$ RHS $\quad \therefore$ true for $n=k+1$, so true for integers $n \geqslant 0$ by mathematical induction.
(c)

(i) Area $D B F E \leq$ Area under curve \leq Area AEFC

$$
\begin{aligned}
& \frac{1}{n} \frac{1}{1+\frac{1}{n}} \leqslant \int_{1}^{1+\frac{1}{n}} \frac{d x}{x} \leqslant \frac{1}{n} \times 1 \\
& \therefore \frac{1}{n+1} \leqslant \int_{1}^{1+\frac{1}{n}} \frac{d x}{x} \leqslant \frac{1}{n}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{1}^{1+\hbar} \frac{d x}{x} & =[\ln x]_{1}^{1+\frac{1}{n}} \\
& =\ln \left(1+\frac{1}{n}\right)-\ln (1) \\
& =\ln \left(1+\frac{1}{n}\right) \\
\therefore \frac{1}{n+1} & \leqslant \ln \left(1+\frac{1}{n}\right) \leqslant \frac{1}{n} \\
e^{\frac{1}{n+1}} & \leqslant e^{\ln (1+\hbar)} \leqslant e^{\frac{\hbar}{n}} \\
e^{\frac{n}{n+1}} & \leqslant\left(1+\frac{1}{n}\right)^{n} \leqslant e
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} e^{\frac{n}{n+1}} & =\lim _{n \rightarrow \infty} e^{\frac{1}{1+\hbar}} \\
& =e^{\frac{1}{100}} \\
& =e
\end{aligned}
$$

Since $e^{\frac{n}{n+1}} \rightarrow e$ from below, $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ also ie. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$

$$
\begin{aligned}
\text { (d) } \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} & =\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n}\right)^{k} \quad \begin{array}{l}
\text { recognising app titan } \\
\text { binomial theorem to } \\
\text { and wring forced }
\end{array} \\
& =\sum_{k=0}^{\infty} \lim _{n \rightarrow \infty}\binom{n}{k} \frac{1}{n^{k}} \quad \begin{array}{l}
\text { since } 0<\frac{1}{n}<1 \\
\text { for } n>0
\end{array} \\
\therefore \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} & =\sum_{k=0}^{\infty} \lim _{n \rightarrow \infty} \frac{n!}{(n-k)!k!n^{k}} \quad \\
& =\sum_{k=0}^{\infty} \lim _{n \rightarrow \infty} \frac{n!}{(n-k)!n^{k}} \times \frac{1}{k!}
\end{aligned}
$$

From (b): $\lim _{p \rightarrow \infty} \frac{p!}{(p-n)!p^{n}}=1$
Using dummy variables, $p \Rightarrow n, n \Rightarrow k$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n!}{(n-k)!n^{k}} \\
\therefore \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} & =\sum_{k=0}^{\infty} 1 \times \frac{1}{k!}
\end{aligned}
$$

Applying result from (c)(iii):

$$
\begin{aligned}
e & =\sum_{n=0}^{\infty} \frac{1}{k!} \\
& =\frac{1}{2!}+\frac{1}{11}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots \\
e & =1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots
\end{aligned}
$$

