Sydney Grammar School

FORM VI

MATHEMATICS EXTENSION 2

Friday 10th August 2018

General Instructions

- Reading time - 5 minutes
- Writing time - 3 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 100 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 90 Marks

- Questions 11-16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet
- Reference Sheet
- Candidature - 77 boys
Examiner
RCF

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Given $z=i$ is a zero of $P(z)=z^{4}+z^{3}+a z^{2}+z-6$, what is the value of a ?
(A) -5
(B) 5
(C) -7
(D) 7

QUESTION TWO

A hyperbola centred on the origin with eccentricity 2 has foci at $(6,0)$ and $(-6,0)$.
What is its Cartesian equation?
(A) $\frac{x^{2}}{27}-\frac{y^{2}}{9}=1$
(B) $\frac{x^{2}}{36}-\frac{y^{2}}{4}=1$
(C) $\frac{x^{2}}{9}-\frac{y^{2}}{27}=1$
(D) $\frac{x^{2}}{4}-\frac{y^{2}}{36}=1$

QUESTION THREE

Consider the curve with implicit equation $x^{3}-y^{3}+3 x y+1=0$. Which of the following is the correct expression for $\frac{d y}{d x}$?
(A) $\frac{y^{2}+x}{x^{2}-y}$
(B) $\frac{x^{2}+y}{y^{2}-x}$
(C) $\frac{y^{2}-x}{x^{2}+y}$
(D) $\frac{x^{2}-y}{y^{2}+x}$

QUESTION FOUR

Suppose w is one of the complex roots of $z^{3}-1=0$. What is the value of $\frac{1}{1+w}+\frac{1}{1+w^{2}}$?
(A) -1
(B) 0
(C) 1
(D) 2

QUESTION FIVE

The polynomial $P(z)$ with real co-efficients has a zero $z=1+3 i$. Which of the following quadratic polynomials must be a factor of $P(z)$?
(A) $z^{2}-2 z-8$
(B) $z^{2}+2 z+8$
(C) $z^{2}+2 z-10$
(D) $z^{2}-2 z+10$

QUESTION SIX

An object of mass m falling under gravity experiences a resistive force R proportional to the square of its velocity, that is $R=m k v^{2}$. Which expression best describes the object's terminal velocity?
(A) $\sqrt{g+k}$
(B) $\sqrt{g k}$
(C) $\sqrt{g-k}$
(D) $\sqrt{\frac{g}{k}}$

QUESTION SEVEN

The graph above shows the region enclosed between the curves $y=4 x-x^{2}$ and $y=x$. This region is rotated about the line $x=4$ to create a volume which can be evaluated using cylindrical shells. Which of the following integrals will give the correct value for this volume?
(A) $\pi \int_{0}^{4}(4-y)^{2} d y$
(B) $2 \pi \int_{0}^{3} x(3-x)(4-x) d x$
(C) $2 \pi \int_{0}^{3} x^{2}(3-x) d x$
(D) $2 \pi \int_{0}^{3} x^{2}-x^{2}(4-x)^{2} d x$

QUESTION EIGHT

Graph One drawn above shows $y=f(x)$. Graph Two shows a related graph. Which one of the following equations would give Graph Two?
(A) $y=-f(|x|)$
(B) $|y|=f(-x)$
(C) $-y=|f(x)|$
(D) $y=-|f(|x|)|$

QUESTION NINE

In the Argand diagram, $A B C D$ is a square and the vertices A and B correspond to the complex numbers u and v respectively. Which complex number corresponds to the diagonal $B D$?
(A) $(u-v)(1-i)$
(B) $(u-v)(1+i)$
(C) $(v-u)(1+i)$
(D) $(u+v)(1-i)$

QUESTION TEN

Which of the following integrals is equal to $\int_{0}^{2 a} f(x) d x$?
(A) $\int_{-a}^{a} f(x-a) d x$
(B) $\int_{-a}^{a} f(a-x) d x$
(C) $\int_{0}^{a} f(x+a)+f(x-a) d x$
(D) $\int_{-a}^{a} f(2 a-x) d x$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Use integration by parts to find $\int x \sin x d x$.
(b) Let $z=1-i$ and $w=i \sqrt{3}-1$.
(i) Express $z w$ in the form $a+i b$, where a and b are real.
(ii) By expressing both z and w in modulus-argument form, write $z w$ in modulus-argument form.
(iii) Hence find the exact value of $\sin \frac{5 \pi}{12}$.
(iv) By using the result of part (ii), or otherwise, calculate $[(1-i)(i \sqrt{3}-1)]^{6}$.
(c) Find:
(i) $\int \frac{x}{\sqrt{4+x^{2}}} d x$
(ii) $\int \frac{x^{2}-x+3}{x-1} d x$
(iii) $\int \frac{1}{x^{2}-6 x+13} d x$
(d) The quartic polynomial $P(x)=x^{4}+3 x^{3}-6 x^{2}-28 x-24$ is known to have a zero of multiplicity 3 . Factorise $P(x)$ completely.

QUESTION TWELVE (15 marks) Use a separate writing booklet.
(a) (i) Sketch the region in the complex plane which simultaneously satisfies

$$
0 \leq \arg (z-2) \leq \frac{\pi}{3} \text { and }|z-2| \leq 1
$$

Clearly label the coordinates of any corners of the region, indicating if they are included in the region.
(ii) Hence find the greatest value of $\arg z$.
(b)

A camping tent is shown has an elliptical base $\frac{x^{2}}{3}+\frac{y^{2}}{2}=1$. Cross sections perpendicular to the base are equilateral triangles. The diagram above shows the base and one such triangle. All units are in metres.
(i) Show that a typical cross-sectional area is given by $2 \sqrt{3}\left(1-\frac{x^{2}}{3}\right)$ square metres.
(ii) Hence find the volume of the tent in cubic metres.
(c) (i) Show that the normal to the hyperbola $x y=c^{2}, c \neq 0$, at $P\left(c p, \frac{c}{p}\right)$ is given by

$$
p x-\frac{y}{p}=c\left(p^{2}-\frac{1}{p^{2}}\right) .
$$

(ii) The normal at P meets the hyperbola again at $Q\left(c q, \frac{c}{q}\right)$. Find q in terms of p.
(d) The polynomial equation $x^{4}-8 x^{3}+16 x^{2}-1=0$ has roots α, β, γ and δ.
(i) Find the monic polynomial equation with roots $(\alpha-2),(\beta-2),(\gamma-2)$ and $(\delta-2)$.
(ii) Hence, or otherwise, solve $x^{4}-8 x^{3}+16 x^{2}-1=0$.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.
(a) Sketch each of the following loci in the complex plane.
(i) $z^{2}-(\bar{z})^{2}=-8 i$
(ii) $2|z|=z+\bar{z}+4$
(b) Use the substitution $t=\tan \frac{x}{2}$ to show that

$$
\int_{0}^{\frac{\pi}{3}} \sec x d x=\ln (2+\sqrt{3})
$$

(c) The polynomial $P(z)=z^{3}+a z+b$ has zeroes α, β and $3(\alpha-\beta)$.
(i) Show that $a=-7 \alpha^{2}$.
(ii) Show that $b=6 \alpha^{3}$.
(iii) Deduce that the zeroes of $P(z)$ are $\frac{-7 b}{6 a}, \frac{-7 b}{3 a}$ and $\frac{7 b}{2 a}$.
(d) Find two numbers whose sum is 4 and whose product is 29 .
(a) The circle $x^{2}+y^{2}=4$ is rotated about the line $x=3$ to form a torus. Use the method of cylindrical shells to prove that the volume of the torus is $24 \pi^{2}$ cubic units.
(b)

The function $f(x)$ graphed above has a minimum turning point at $\left(-1,-\frac{1}{e}\right)$, a maximum turning point at $\left(1, \frac{3}{e}\right)$ and a horizontal asymptote at $y=-\frac{1}{e}$.
The x-intercepts are marked a, b and c respectively and the y-intercept is $\left(0, \frac{e-1}{e}\right)$.
Without using calculus, sketch the following curves showing their essential features, taking at least one-third of a page for each graph.
(i) $y=\frac{1}{f(x)}$
(ii) $y=\sqrt{f(x)}$
(iii) $y=[f(x)]^{2}$
(c) Let $I_{n}=\int_{0}^{a}\left(a^{2}-x^{2}\right)^{n} d x$, where n is an integer and $n \geq 0$.
(i) Show that $I_{n}=\frac{2 a^{2} n}{2 n+1} I_{n-1}$, for $n \geq 1$.
(ii) Hence, or otherwise, evaluate $\int_{0}^{2}\left(4-x^{2}\right)^{3} d x$.
(a) By considering the Binomial expansion of $(1+i)^{n}$ for the case when n is even, show that:

$$
1-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\ldots+(-1)^{\frac{n}{2}}\binom{n}{n}=2^{\frac{n}{2}} \cos \frac{n \pi}{4}
$$

(b) A car of mass $m \mathrm{~kg}$ is being driven along a straight road. The motor of the car provides a constant propelling force $m P$, while the car experiences a resistive force of $m k v^{2}$, where $v \mathrm{~ms}^{-1}$ is the velocity of the car and k is a positive constant. The car is initially at rest.
(i) Show that $\frac{d x}{d v}=\frac{v}{P-k v^{2}}$, where x is the displacement of the car from its initial position in metres.
(ii) Show that $v^{2}=\frac{P}{k}\left(1-e^{-2 k x}\right)$. Hence, or otherwise, explain why the maximum velocity of the car is $V_{M}=\sqrt{\frac{P}{k}} \mathrm{~ms}^{-1}$.
(iii) Show that the distance required for the car to reach a velocity of $\frac{1}{3} V_{M}$ is approximately 41% of the distance required for the car to reach a velocity of $\frac{1}{2} V_{M}$.
(c) (i) Use De Moivre's theorem to show that $\sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta$.
(ii) Hence find the four roots of the equation $16 x^{4}-20 x^{2}+5=0$.
(iii) Show that $\sin ^{2}\left(\frac{\pi}{5}\right)+\sin ^{2}\left(\frac{2 \pi}{5}\right)=\frac{5}{4}$.
(iv) Hence show that $\cos \left(\frac{2 \pi}{5}\right)=\frac{\sqrt{5}-1}{4}$.
(d) Let $P(x)$ be a monic polynomial of degree n with rational coefficients and zeroes $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$. Prove that:

$$
P^{\prime}(x)=P(x)\left(\frac{1}{x-\alpha_{1}}+\frac{1}{x-\alpha_{2}}+\frac{1}{x-\alpha_{3}}+\ldots+\frac{1}{x-\alpha_{n}}\right)
$$

for all values of x, excluding the zeroes.
\qquad
(a) $P(a \cos \theta, b \sin \theta)$ and $Q(a \cos \phi, b \sin \phi)$ are distinct points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with eccentricity e. The equation of the chord $P Q$ is

$$
y-b \sin \phi=\frac{b \sin \phi-b \sin \theta}{a \cos \phi-a \cos \theta}(x-a \cos \phi) .
$$

(i) If $P Q$ is a focal chord of this ellipse, show that:

$$
e=\frac{\sin (\phi-\theta)}{\sin \phi-\sin \theta}
$$

(ii) If $P Q$ subtends a right angle at the positive x-intercept of the ellipse at $R(a, 0)$, show that:

$$
\tan \frac{\theta}{2} \tan \frac{\phi}{2}=-\frac{b^{2}}{a^{2}} .
$$

(b) (i) Sketch $y=e^{x} \sin x$ for the domain $0 \leq x \leq 2 \pi$, clearly indicating the x-intercepts.
(ii) Let $I=\int_{(k-1) \pi}^{k \pi} e^{x} \sin x d x$, where k is an integer. Show that:

$$
2 I=(-1)^{k-1} e^{k \pi}\left(1+e^{-\pi}\right) .
$$

(iii) Hence find the area bounded by $y=e^{x} \sin x$, the x-axis and the lines $x=0$ and $x=2 \pi$.
(c) NOTE: The diagram below has been reproduced on a loose sheet so that working may be done on the diagram. Write your candidate number on the top of the sheet and place the sheet inside your answer booklet for Question Sixteen.

A scalene triangle $A B C$ has equilateral triangles $A B X, B C Y$ and $A C Z$ constructed on its three sides. Circle \mathcal{C}_{1} is drawn to pass through the vertices of $\triangle A B X$ and has centre P. Similarly circle \mathcal{C}_{2} is drawn through the vertices of $\triangle B C Y$ and has centre Q. These two circles meet at B and O as shown in the diagram above.
(i) Find the sizes of $\angle A O B, \angle B O C$ and $\angle A O C$, giving clear geometric reasons.
(ii) Prove that $A O C Z$ is a cyclic quadrilateral.
(iii) Taking R as the centre of circle $A O C Z$, prove that $\triangle P Q R$ is equilateral.

END OF EXAMINATION

Bundle this sheet with the rest of question sixteen.

QUESTION SIXTEEN

(1) SGS 201840 TRAL
$P(z)=z^{4}+z^{3}+a z^{2}+z-6$.
sub $z=i$
$P(i)=i^{4}+i^{3}+a i^{2}+i-6$

$$
\begin{aligned}
& =1-i-a+i-6 \\
& =-5-a
\end{aligned}
$$

If $P(i)=0 \quad a=(-5) \quad(A)$
(2)

$$
\begin{align*}
& \text { 2) } e=2 \quad(6,0) \Rightarrow a=3, \\
& b^{2}=a^{2}\left(e^{a}-1\right) \\
& b^{2}=a^{2}(4-1) \\
& b^{2}=27 \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \therefore \frac{x^{2}}{9}-\frac{y^{2}}{27}=1 \tag{c}
\end{align*}
$$

$$
\begin{align*}
& \text { (3) } x^{3}-y^{3}+3 x y+1=0 \\
& \text { Dff }-x+x \\
& 3 x^{2}-3 y^{2} \frac{d y}{d x}+3 y+3 x \frac{d y}{d x}=0 \\
& 3 x^{2}+3 y=\left(3 y^{2}-3 x\right) \frac{d y}{d x} \\
& \frac{d y}{d x}=\frac{x^{2}+y}{y^{2}-x} \tag{B}
\end{align*}
$$

(4)

$$
\begin{aligned}
& z^{3}-1=0 \\
& (z-1)\left(z^{2}+z+1\right)=0
\end{aligned}
$$

$$
\begin{aligned}
\omega \text { is complex loot } & \therefore \omega^{2}+\omega+1=0 \\
\frac{1}{1+\omega}+\frac{1}{1+\omega^{2}} & =\frac{\left(1+\omega^{2}\right)+(1+\omega)}{(1+\omega)\left(1+\omega^{2}\right)} \\
& =\frac{1+\omega+\omega^{2}+1}{1+\omega+\omega^{2}+\omega^{3}} \\
& =\frac{0+1}{0+1}=1
\end{aligned}
$$

MUTIPLE CHOTCE SUMMARY
(1) A
(2) C
(3) B
(4) C
(5) D
(6) D
(7) B
(8) D
(a) A
(10) B
(5)

One zens $1+3 i$
Other zew $1-3 i$ since Real Coefferets
Quadrate Factor

$$
\begin{align*}
& z^{2}-2 \operatorname{Re}(\alpha) z+\alpha \bar{\alpha} \\
& z^{2}-2 z+10 \tag{D}
\end{align*}
$$

(6) $m k v^{2}$

I At Terrmal veloet, no net fore

$$
\begin{align*}
m k v^{2} & =m g \\
v^{2} & =g \\
v & =\sqrt{\frac{g}{k}} \quad(v>0) \tag{D}
\end{align*}
$$

(7)

$$
\begin{align*}
& V=\int_{r_{\text {N }}}^{V_{\text {or }}} 2 \pi r h d N \\
& \begin{aligned}
r & =4-x \\
d r & =-d x
\end{aligned} \\
& r_{\operatorname{in}} \Rightarrow x=3 \\
& r_{\text {or }} \Rightarrow x=0 \\
& h=\left(4 x-x^{2}\right)-x \\
& V=\int_{x=3}^{0} 2 \pi(4-x)\left(3 x-x^{2}\right)(-d x) \\
& =2 \pi \int_{0}^{3} x(3-x)(4-x) d x \tag{B}
\end{align*}
$$

(8)

$$
y=-f(|x|)
$$

$$
|y|=f(-x)
$$

(9) \vec{A} repeseant u
$\overrightarrow{O B}$ repestat V
$\overrightarrow{B A}=\overrightarrow{O A}-\overrightarrow{O B}$
reperesents (u-v)
$\overrightarrow{B C}$ is $\overrightarrow{A B}$ whated 90° dorenine reperato $\frac{u-v}{i}=-i(u-v)$

Athematwely:
 and enluged $14 \sqrt{2}$ $\times \sqrt{2}$ ao $\left(-\frac{\pi}{4}\right)$ $=(1-i)$
(10) A tranolates function to the nigit by a hence reques linits $x=a$ i $x=3 a$ B reflects in vestial hie $x=\frac{a}{2}$ Lence conect lumits $x=a$ and $x^{2}=-a$. C has fust tern taviolating function to the left b. a, but second sectom tranolates function to the nagit hence not past of original avea Dreflects function in veitial lie $x=a$ Leme requires lunts $x=0 \not \& x=2 a$
(11)
a) $\int x \sin x d x$ $\left.\begin{array}{l}\frac{d v}{d x}=\sin x \\ v=-\cos x\end{array}\right\}$

$$
\begin{aligned}
& =-x \cos x+\int \cos x d x \\
& =-x \cos x+\sin x+c \quad /(\text { Do not pendive }+c)
\end{aligned}
$$

b) $z=1-i \quad 0=i \sqrt{3}-1$
(i)

$$
\begin{aligned}
z \omega & =(1-i)(i \sqrt{3}-1) \\
& =\sqrt{3}-1+\sqrt{3}+i \\
& =(\sqrt{3}-1)+i(\sqrt{3}+1)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\omega=2 \operatorname{cis}\left(\frac{2 \pi}{3}\right) \\
\left(\begin{array}{c}
\text { Bot } \left.\begin{array}{l}
\text { Buntz } \\
\text { conet }
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

$$
Z \omega=2 \sqrt{2} \cos \left(\frac{2 \pi}{3}-\frac{\pi}{4}\right) \sqrt{ }
$$

$$
=2 \sqrt{2} \operatorname{cis}\left(\frac{5 \pi}{1}\right)
$$

(iii) Equatg imiginan parts

$$
\begin{aligned}
& \sqrt{3}+1=2 \sqrt{2} \sin \frac{5 \pi}{12} \\
& \therefore \sin \frac{5 \pi}{12}=\frac{\sqrt{3}+1}{2 \sqrt{2}} \\
& =\frac{\sqrt{6}+\sqrt{2}}{4} \\
& \underset{(x \sqrt{2})}{(\sqrt{2})} / \sqrt{(\text { Orequablerat) }} \\
& \text { (iv) }(z L)^{6}=\left(2 \sqrt{2} a 0 \frac{5 \pi}{12}\right)^{6} \\
& \text { (} a d x: 8{ }^{3} i \text {) } \\
& =(2 \sqrt{2})^{6} \operatorname{cis}\left(\frac{30 \pi}{12}\right)=512 \operatorname{cis} \frac{5 \pi}{2}=512 i /(0 x)
\end{aligned}
$$

(IIC)
(i) $\int \frac{x}{\sqrt{4+x^{2}}} d x$ Revese Chain Pule

$$
\begin{aligned}
& 14+x^{2} \\
& =\left(4+x^{2}\right)^{\frac{1}{2}}+c
\end{aligned}
$$

of substhute $n=4+x^{2}$
(ii)

$$
\begin{aligned}
\int \frac{x^{2}-x+3}{x-1} d x & =\int \frac{x(x-1)+3}{x-1} d x \\
& =\int x+\frac{3}{x-1} d x \\
& =\frac{x^{2}}{2}+3 \ln |x-1|+c
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\int \frac{1}{x^{2}-6 x+13} d x & =\int \frac{1}{(x-3)^{2}+4} d x \\
& =\frac{1 \tan ^{-1}\left(\frac{x-3}{2}\right)+C}{}
\end{aligned}
$$

d)

$$
\begin{aligned}
& P(x)=x^{4}+3 x^{3}-6 x^{2}-28 x-24 \\
& P^{\prime}(x)=4 x^{3}+9 x^{2}-12 x-28 \\
& P^{\prime \prime}(x)=12 x^{2}+18 x-12
\end{aligned}
$$

Zevo of milliphect $3 \Rightarrow P^{\prime \prime}(x)=0$

$$
\begin{aligned}
\therefore 2 x^{2}+3 x-2 & =0 \\
(2 x-1)(x+2) & =0 \\
x=1 / 2 \text { or } x & =-2 .
\end{aligned}
$$

$$
\begin{aligned}
P(-2) & =16-24-24+56-24 \\
& =0 \\
P^{\prime}(-2) & =-32+36+24-28 \\
& =0
\end{aligned}
$$

ether $x=\frac{y}{2}$ or (-2) could be mithple zero
\therefore Tinple zew is $x=-2$

$$
P(x)=(x+2)^{3}(x-\alpha)
$$

Corinder constattem $-8 \alpha=-24$

$$
\therefore x=3
$$

$$
P(x)=(x+2)^{3}(x-3)
$$

Attementurel:
(frolut of loot)

$$
\begin{aligned}
\sum \alpha \beta 1 \delta=\frac{e}{a} & =-24 \\
(-2)^{3} \times \alpha & =-24 \\
-8 \alpha & =-24 \\
\alpha & =3
\end{aligned}
$$

 $P(1)=0$ was suffung here but vonidnot have been if wooded diferently)
(120)

(ii) Greatest value of $\arg z$ occurs at $\left(\frac{5}{2}, \sqrt{3}\right)$ hance $\max \arg z=\tan ^{-1}(\sqrt{3} / 5)$
(12b)

$$
\begin{array}{rlrl}
h=l \sin 60^{\circ} & A & =1 / 2 h \\
& =\frac{\sqrt{3} \lambda}{2} & & =12 l \times \frac{\sqrt{3} l}{2} \\
& & =\frac{\sqrt{3} l^{2}}{4}
\end{array}
$$

$$
\begin{aligned}
\frac{x^{2}}{3}+\frac{y^{2}}{2} & =1 \\
y^{2} & =2\left(1-\frac{x^{2}}{3}\right) \\
y & = \pm \sqrt{\frac{2}{3}\left(3-x^{2}\right)} \\
\text { hence } l & =2 \sqrt{\frac{2}{3}\left(3-x^{2}\right)} \\
l^{2} & =4\left(\frac{2}{3}\left[3-x^{2}\right]\right) \\
& =\frac{8}{3}\left(3-x^{2}\right) \\
\text { Area } & =\sqrt{3} \times \frac{8}{4}\left(3-x^{2}\right) \\
& =\frac{2}{\sqrt{3}}\left(3-x^{2}\right) \\
& =2 \sqrt{3}\left(1-x^{2} / 3\right) m^{2} \quad \text { sHow }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
V & =\int_{x=-\sqrt{3}}^{\sqrt{3}} 2 \sqrt{3}\left(1-x^{2} / 3\right) d x \\
& =\int_{0}^{\sqrt{3}} 4 \sqrt{3}\left(1-x^{2} / 3\right) d x \quad(b y \text { even symmetry }) \\
& =4 \sqrt{3}[x-x / 1 / 9]_{0}^{\sqrt{3}} \\
& =4 \sqrt{3}(\sqrt{3}-3 \sqrt{3} / 9) \\
& =4 \sqrt{3}\left(\frac{2 \sqrt{3}}{3}\right) \\
& =8 \mathrm{~m}^{3}
\end{aligned}
$$

c) $x_{y}=c^{2} \quad P(c p, c)$

Drffientate parametinally or exphucty
$d x=c \quad d y=-c$
or expluctt
$y=c^{2}$
$d y$

$$
\frac{d y}{d x}=\frac{d y \partial p}{d x / d p}=-\frac{1}{p^{2}}
$$

$$
\begin{aligned}
& \text { or impluatt } \\
& y+x \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{-y}{x} \\
&\left(\frac{d y}{d x}\right)_{p}=\frac{-c / p}{c p} \\
&=-\frac{1}{p^{2}}
\end{aligned}
$$

(i) Grament p fromal $=p^{2}$

$$
\begin{array}{rlrl}
\frac{d y}{d x} & =-\frac{c^{2}}{x^{2}} & \frac{d y}{d x} & =-\frac{y}{x} \\
\left(\frac{d y}{d x}\right)_{p} & \left.=-\frac{c^{2}}{(c p}\right)^{2} & \left(\frac{d y}{d x}\right)_{p}=\frac{-c / p}{c p} \\
& =-\frac{1}{p^{2}} & &
\end{array}
$$

$$
\left.\begin{array}{rl}
y-c / p & =p^{2}(x-c p) \\
c p^{3}-c / p & =p^{2} x-y \\
c\left(p^{2}-1 / p^{2}\right) & =p x-y \quad \text { as riswined. }
\end{array}\right\}
$$

$c\left(p^{2}-1 / p^{2}\right)=p x-y$ as requised
(ii) Mratheort of $\begin{aligned} P Q & =\frac{\frac{c}{q}-\frac{c}{p}}{c q-c p}\end{aligned}$

Fethod 27 imenection of
nomal and mpperbola nomal and mperboind
$x y=c^{2}$ (1)

$$
\begin{aligned}
& =\frac{\frac{p-q}{p q}}{q-p} \\
& =\frac{-1}{p q}
\end{aligned}
$$

Equatig gradiet of noumal and ohord $P Q$

$$
\begin{aligned}
p^{2} & =-\frac{1}{p q} \\
\therefore q & =-\frac{1}{p^{3}}
\end{aligned}
$$

$$
\begin{align*}
& x y=c^{2} \\
& p x-\frac{y}{p}=c\left(p^{2}-\frac{1}{p^{2}}\right) \tag{2}\\
& \text { (1) }
\end{align*}
$$

from (1) $y=c^{2} / x$
subbin (2) $p x-\frac{c^{2}}{p x}=c\left(p^{2}-1 / p^{2}\right)$

$$
p^{2} x^{2}-c p x\left(p^{2}-1 / p^{2}\right)-c^{2}=0
$$ voto of thes eqn are,Q. x vatnes of points $P \not \& Q$.

$\sum \alpha p: c p \times c q=\frac{-c^{2}}{p^{2}}$
(producto frooto) $p=-\frac{1}{3}$ or $\sum \alpha \alpha_{(\text {Sum of } 100 t 0} c p+c q=\frac{q^{3}}{} \frac{c p\left(p^{2}-1 / p^{2}\right)}{p^{2}}$

Method 3
The nomal meets the hyperbola agoin at Q hence $Q\left(c q, \frac{c}{q}\right)$ satiofios eqn of nomal.
$p c q-\frac{c}{p q}=c\left(p^{2}-\frac{1}{p^{2}}\right)$

$$
\begin{aligned}
& p q-p^{2}=\frac{1}{p q}-\frac{1}{p^{2}} \\
& p(q-p)=\frac{1}{p^{2} q}(p-q) \\
& p=-\frac{1}{p^{2}} q \\
& q=\frac{-1}{p^{3}}
\end{aligned}
$$

(12d)

$$
\text { (1) } P(x)=x^{4}-8 x^{3}+16 x^{2}-1
$$

$$
\begin{aligned}
\text { For velated eqn replace } x \text { wh }(x+2) \\
\begin{aligned}
P(x+2)= & (x+2)^{4}-8(x+2)^{3}+16(x+2)^{2}-1 \\
= & x^{4}+4 x^{3} \times 2+6 x^{2} \times 4+4 x \times 8+16 \\
& -8\left(x^{3}+6 x^{2}+12 x+8\right)+16 x^{2}+64 x+64-1 \\
= & x^{4}+8 x^{3}-8 x^{3}+24 x^{2}-48 x^{2}+16 x^{2} \\
& +3 x-96 x+64 x+16-64+64-1 \\
= & x^{4}-8 x^{2}+15
\end{aligned}
\end{aligned}
$$

hence $x^{4}-8 x^{2}+15=0$ is monic pol nomil eqn V is mome poots $(\alpha-\alpha),(\beta-2)$.)
(ii)

$$
\begin{aligned}
& \left(x^{2}-5\right)\left(x^{2}-3\right)=0 \\
& (x+\sqrt{5})(x-\sqrt{5})(x+\sqrt{3})(x-\sqrt{3})=0 \\
& x= \pm \sqrt{3}, \pm \sqrt{5}
\end{aligned}
$$

Hence solutions to original quaster eqn

$$
x=2 \pm \sqrt{3}, 2 \pm \sqrt{5}
$$

(13)
a) (i)

$$
\begin{aligned}
& z^{2}-\bar{z}^{2}=-8 i \\
& (z-\bar{z})(z+\bar{z})=-8 i
\end{aligned}
$$

(ii)

$$
2|z|=z+\bar{z}+4
$$

Let $\begin{aligned} z & =x+i y \\ z & =x-i y\end{aligned}$

$$
z=x-i y
$$

$$
\begin{aligned}
& 4 x y i=-8 i \\
& x y=-2
\end{aligned}
$$

or $(x+i y)^{2}-(x-i y)^{2}=-8 i$

$$
\begin{gathered}
\left.(x+i y)-(x-i y)=8 i y^{2}\right)=-8 i \\
\left(x^{2}+2 x y i-y^{2}\right)-\left(x^{2}-2 x y i-y^{2}\right) \\
4 x y i=-8 i
\end{gathered}
$$

Let $z=x+i y$,

$$
\begin{aligned}
2 i y \times 2 x & =-8 i \\
& =-8 i
\end{aligned}
$$

$$
x y=-2
$$

$$
\begin{aligned}
2 \sqrt{(x+i y)(x-i y)} & =(x+i y)+(x-i y)+4 \\
2 \sqrt{x^{2}+y^{2}} & =2 x+4 \\
\sqrt{x^{2}+y^{2}} & =x+2 \\
x^{2}+y^{2} & =x^{2}+4 x+4 \\
y^{2} & =4(x+1)
\end{aligned}
$$

b) π
$I=\int_{0}^{\pi / 3} \sec x d x$

$$
\begin{aligned}
& t=\tan x / 2 \\
& d t\left.=\frac{1}{2} \sec ^{2}(x) 2\right) d x \\
& d t=\frac{x}{2}\left(1+\tan ^{2}(x)\right) d x \\
&\left.\begin{array}{ll}
\frac{2 d t}{1+t^{2}} & =d x \\
\sec x & =\frac{1}{\cos x} \\
& =\frac{1+t^{2}}{1-t^{2}}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
I & =\int_{0}^{1 / \sqrt{3}} \frac{1+t^{2}}{1-t^{2}} \times \frac{2 d t}{1+t^{2}} \\
& =\int_{0}^{1 / \sqrt{3}} \frac{2 d t}{1-t^{2}} / \frac{2}{1-t^{2}}=\frac{A}{1-t}+\frac{B}{1+t} \\
& =\int_{0}^{1 / 3} \frac{1}{1-t^{2}}+\frac{1}{1+t} d t / \begin{array}{c}
\text { sing cover-np mbe } \\
A=1
\end{array}, B=1 \\
& =[-\ln |1-t|+\ln |1+t|]_{0}^{1 / \sqrt{3}} \\
& =\left[\ln \left(\frac{1+t}{1-t}\right)\right]_{0}^{1 / \sqrt{3}} \\
& \left.=\ln \left(\frac{1+\frac{1}{\sqrt{3}}}{1-\sqrt{3}}\right)-\ln \right\rvert\, \\
& =\ln \left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) \quad\left(\frac{x \sqrt{3}+1)}{(\times \sqrt{3}+1)}\right. \\
& =\ln \left(\frac{3+2 \sqrt{3}+1}{3-1}\right) \\
& =\ln (2+\sqrt{3})
\end{aligned}
$$

(13C) $P(z)=z^{3}+a z+b$ has zeves α, β and $3(x-\beta)$

$$
\begin{array}{ll}
\text { (i) }(\Sigma \alpha) & \alpha+\beta+3(\alpha-\beta)=0 \\
\text { io sum of wot } & 4 \alpha-2 \beta=0
\end{array}
$$

is sumof wots $\quad 4 \alpha-2 \beta=0$

$$
\beta=2 \alpha
$$

$\left(\sum_{\text {Sum of paiso }} \alpha \beta \quad \alpha \beta+3 \alpha(\alpha-\beta)+3 \beta(\alpha-\beta)=a\right.$
sum of purs $\quad 3 \alpha^{2}-3 \beta^{2}+\alpha \beta=a^{2}$
Sub $\beta=2 \alpha \quad 3 \alpha^{2}-3 \times 4 \alpha^{2}+2 \alpha^{2}=a \quad \sqrt{\text { sha }}$ "

$$
a=-7 \alpha^{2} \text { (1) (as leqminel) }
$$

(ii) $\left(\Sigma \alpha_{\phi}\right)$ product of poots

$$
\begin{aligned}
& 3 \alpha \beta(\alpha-\beta)=-b \\
& 6 \alpha^{2}(-\alpha)=-b \\
& b=6 \alpha^{3}(2) \text { (s requied) }
\end{aligned}
$$

(iii) (2) \div (1)

$$
\begin{aligned}
\frac{b}{a} & =\frac{6 \alpha^{3}}{-7 \alpha^{2}} \\
-\frac{7 b}{6 a} & =\alpha \\
\therefore \beta & =2 \alpha \\
& =-\frac{7 b}{3 a} \\
3(\alpha-\beta) & =3\left(-\frac{7 b}{6 a}-\right. \\
& =-\frac{7 b}{2 a}+\frac{7 b}{a} \\
& =\frac{7 b}{2 a}
\end{aligned}
$$

$$
3(\alpha-p)=3\left(-\frac{7 b}{6 a}-\frac{7 b}{3 a}\right) \quad / \text { "srow' }
$$

zeroes of $P(z)$ are $-7 b a,-\frac{7 b}{3 a}$ and $\frac{7 b}{2 a}$
(Bd) Qnestion means solve

$$
\begin{gathered}
z^{2}-4 z+29=0 \\
(z-2)^{2}+25=0 \\
(z-2)^{2}=-25 \\
z-2= \pm 5 i \\
z=2 \pm 5 i
\end{gathered}
$$

athemativel : lt roots be $\alpha k \beta$.

$$
\begin{aligned}
& \alpha+\beta=4 \text { (1) } \quad \alpha \beta=29(2) \\
& \text { (2) (1) }
\end{aligned}
$$

sub (2) int (1)

$$
\begin{aligned}
& x^{\prime}+\frac{29}{\alpha}=4 \\
& \alpha^{2}-4 \alpha+29=0 \quad \text { as befoce... }
\end{aligned}
$$

attematwrel: Let wote be $a+i b$ and a-ib potyffong use of congugates since sum and product are REAL.

$$
\begin{array}{cc}
(a+i b)(a-i b)=29 & \\
a^{2}+b^{2}=29 \text { (1) } & \sqrt{\text { sain of Equs }} \\
(a+i b)+(a-i b)=4 \\
2 a=4 \quad \text { (2) } & \Rightarrow a=2 \tag{2}\\
& b^{2}=25 \\
b= \pm 5 \\
& z=2+5 i \\
& \text { and } \\
& 2-5 i
\end{array}
$$

(14) a)

$$
\begin{aligned}
& x^{2}+y^{2}=4 \\
& y^{2}=4-x^{2} \\
& y= \pm \sqrt{4-x^{2}} \\
& r=3-x \\
& d r=(-d x) \\
& r_{\operatorname{mos}} \Rightarrow x=2 \\
& r_{\text {ous }} \Rightarrow x=(-2) \\
& h=2 \sqrt{4-x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
V & =\int_{x=2}^{-2} 2 \pi(3-x) 2 \sqrt{4-x^{2}}(-d x) \\
& =\int_{-2}^{2} 4 \pi(3-x)\left(4-x^{2}\right)^{1 / 2} d x \\
& =4 \pi \int_{-2}^{2} 3 \sqrt{4-x^{2}} d x-4 \pi \int_{-2}^{2} x\left(4-x^{2}\right)^{2} d x
\end{aligned}
$$

Aver of semi aricle adime $2 /{ }_{-2} \uparrow$
$=4 \pi \times 3 \times \frac{1}{2} \pi 2^{2}-0 \quad$ odis symeretry syminetrictenal $=24 \pi^{2} u^{3}$ as requid

$$
\text { (14) } \begin{aligned}
I_{n} & =\int_{0}^{a}\left(a^{2}-x^{2}\right)^{n} d x \quad u=\left(a^{2}-x^{2}\right)^{n} \quad d v=1 \\
& =\left[x\left(\left(a^{2}-x^{2}\right)^{n}\right]_{0}^{a}-\int_{0}^{a}-2 n x\left(a^{2}-x^{2}\right)^{n-1} \times x d x=n\left(a^{2}-x^{2}\right)^{n-1} \times(-2 x) \quad v=x\right. \\
& =0+2 n \int_{0}^{a} x^{2}\left(a^{2}-x^{2}\right)^{n-1} d x \\
& =2 n \int_{0}^{a}\left(-\left(a^{2}-x^{2}-a^{2}\right)\left(a^{2}-x^{2}\right)^{n-1} d x\right. \\
& =-2 n \int_{0}^{a}\left(a^{2}-x^{2}\right)^{n} d x+2 n a^{2} \int\left(a^{2}-x^{2}\right)^{n-1} d x \\
I_{n} & =-2 n I_{n}+2 n a^{2} I_{n-1} \\
(1+2 n) I_{n} & =2 n a^{2} I_{n-1} \\
& I_{n}=\frac{2 n a^{2}}{1+2 n} I_{n-1} \quad \text { as sequied }
\end{aligned}
$$

(ii)

$$
\text { (ii) } \begin{array}{rlrl}
\int_{0}^{2}\left(4-x^{2}\right)^{3} d x & \Rightarrow a & =2 n=3 \\
I_{0} & =\int_{0}^{2}\left(4-x^{2}\right)^{0} d x & I_{3} & =\frac{2 \times 3 \times 2^{2}}{1+2 \times 3} I_{2} \\
& =\int_{0}^{2} d x & & =\frac{24}{7} I_{2} \\
& =[x]_{0}^{2} & & =\frac{24}{7} \times \frac{16}{5} I_{1} \\
& =2 . & & =\frac{24}{7} \times \frac{16}{5} \times \frac{8}{3} I_{0} \\
\text { or } I_{1}=\int_{0}^{2} 4-x^{2} d x & & =\frac{24}{7} \times \frac{16}{5} \times \frac{8}{3} \times 2 \\
& =\left[4 x-x^{3} / 3\right]_{0}^{2}=8-\frac{8}{3} & & =\frac{2048}{35}
\end{array}
$$

Athematuely: Binomial expansion of integrand

$$
\begin{aligned}
& \begin{aligned}
\left(4-x^{2}\right)^{3} & =4^{3}+3 \times 4^{2} \times\left(-x^{2}\right)+3 \times 4 \times\left(-x^{2}\right)^{2}+\left(-x^{2}\right)^{3} \\
& =64-48 x^{2}+12 x^{4}-x^{6}
\end{aligned} \\
& \begin{aligned}
& \int_{0}^{2} 64-48 x^{2}+12 x^{4}-x^{6} d x \\
&=\left[64 x-16 x^{3}+\frac{12 x^{5}}{5}-\frac{x^{7}}{7}\right]_{0}^{2} \\
&=\left(128-128+\frac{12 \times 32}{5}-\frac{128}{7}\right)-0 \\
&= \frac{2048}{35}
\end{aligned}
\end{aligned}
$$

(15a)

$$
\begin{aligned}
& (1+i)^{n}=1^{n}+\binom{n}{1} 1^{n-1} i+\binom{n}{2} 1^{n-2} i+\binom{n}{3} i^{3}+\ldots+\binom{n}{n} i^{n} \\
& \left(\sqrt{2} c i s \frac{\pi}{4}\right)^{n}=1+\binom{n}{1} i-\binom{n}{2}-\binom{n}{3} i+\binom{n}{4}+\ldots+i^{n}\binom{n}{n} \sqrt{n}
\end{aligned}
$$

Reroutes $2^{n / 2} \operatorname{cis} \frac{n \pi}{4}=\left[1-\binom{n}{2}+\binom{n}{4}-\ldots\left(\begin{array}{l}n\end{array}\right)^{4}\right]+i\left[\binom{n}{1}-\binom{n}{3}+\ldots\right]$
suisse n even $i^{n}= \pm 1$ if n a multiple of four $\begin{aligned} & i^{n}=+1 \\ & i^{n}=(-1)\end{aligned}$

$$
\begin{aligned}
& i^{n}=+1 \\
& i^{n}=(-1) \quad \sqrt{\text { stow }}
\end{aligned}
$$

Equating Real Pasts

$$
2^{n / 2} \cos \frac{n \pi}{4}=1-\binom{n}{2}+\binom{n}{4}-\ldots+(-1)^{n / 2}\binom{n}{n}
$$

b)

(i) Egnof motion

$$
\begin{aligned}
m P-m k v^{2} & =m a \\
P-k v^{2} & =v \frac{d v}{d x} \\
\frac{P-k v^{2}}{v} & =\frac{d v}{d x} \quad \sqrt{3 H a I^{\prime \prime}} \\
\therefore \frac{d x}{d v} & =\frac{v}{P-k v^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int_{0}^{x} d x=\int_{0}^{v} \frac{v}{P-k v^{2}} d v \\
& x=\left[-\frac{1}{2 k} \ln \left(P-k v^{2}\right)\right]_{0}^{r} \\
& =1 / 2 \ln P-\frac{1}{2 k} \ln \left(P-k v^{2}\right) \\
& 2 b c=\ln \left(\frac{P}{P-k v^{2}}\right) \\
& e^{2 k x}=\frac{p}{p-k v^{2}} \\
& P-k v^{2}=P e^{-2 k x} \\
& k V^{2}=P\left(1-e^{-2 k x}\right) \\
& V^{2}=P_{R}\left(1-e^{-2 k x}\right) \text { as requiced }
\end{aligned}
$$

Max velout, of car as $x \rightarrow \infty, e^{-2 k x} 0$

$$
\begin{aligned}
& x \rightarrow \infty \\
& v^{2} \rightarrow \frac{p}{k} \quad e^{-2 k x} \rightarrow 0 \\
& V \rightarrow \sqrt{\frac{p}{k}} \mathrm{~m} / \mathrm{s}^{-1}
\end{aligned}
$$

Attermaturel Teminal Velout? No Netfore $m P=m k v^{2} \quad v^{2}=P / k \quad v=\sqrt{\frac{P}{k}} \quad(v \geqslant 0)$
(iii) $x=\frac{1}{2 k} \ln \left(\frac{P}{P-k v^{2}}\right) \quad V_{M}=\sqrt{\frac{P}{k}}$

Distance to reach $\frac{V_{m}}{2} X_{\frac{2^{\prime}}{m}}=\frac{1}{2 k} \ln \left(\frac{P}{P-k \times 1 / P} 4 \frac{1}{k}\right)$

$$
\begin{aligned}
& =\frac{1}{2 k} \ln \left(\frac{P}{3 P / 4}\right) \\
& =1
\end{aligned}
$$

$$
=\frac{1}{2 k} \ln \frac{4}{3}
$$

$$
\frac{V_{M}}{3} \quad x_{\frac{V_{M}}{3}}=\frac{1}{\partial k} \ln \left(\frac{p}{p-k \times \frac{b}{0} \frac{p}{k}}\right)
$$

$$
=\frac{1}{2 k} \ln \left(\frac{p}{8 p / q}\right)
$$

$$
\begin{aligned}
\therefore \frac{\frac{1}{3} V_{M}}{\frac{1}{2} V_{M}} & =\frac{\ln 9 / 8}{\ln 4 / 3} \sqrt{5 H C} \\
& \doteqdot 0.409 \ldots
\end{aligned}
$$

$$
=\frac{1}{2 k} \ln 9 / 8
$$

Hence distance equaled to reach $\frac{1}{3} V_{M}$ is 41% of distance required to reach $/ 2 \mathrm{~V} / \mathrm{m}$.

$$
\left.\begin{array}{rl}
-\left[\sin ^{2} 2 \pi\right. \\
5
\end{array} \sin ^{2} \frac{\pi}{5}\right]=-5 / 4 \quad \text { "show" }
$$

(ir) Using double angle formula $\sin ^{2} \theta=2(1-\cos 2 \theta)$ and p, thagorean identity $\sin ^{2} \theta=\left(1-\cos ^{2} \theta\right)$

$$
\begin{aligned}
& 1 / 2\left(1-\cos \frac{2 \pi}{5}\right)+\left(1-\cos ^{2} \frac{2 \pi}{5}\right)=5 / 4 \\
& \cos ^{2} \frac{2 \pi y}{5}+1 / 2 \cos \frac{2 \pi}{5}=3 / 2-5 / 4 \\
&=1 / 4
\end{aligned}
$$

($\times 4$) $\quad 4 \cos ^{2} \frac{2 \pi}{5}+2 \cos \frac{2 \pi}{5}-1=0 \quad \sqrt{4}$ Let $u=\cos \frac{2 \pi}{5}$
ie $4 u^{2}+2 u-1=0$

$$
\begin{aligned}
\Delta & =4-4 \times 4 \times(-1) \\
& =20 \\
u & =\frac{-2 \pm \sqrt{20}}{8} \\
u & =\frac{-1 \pm \sqrt{5}}{4}
\end{aligned}
$$

$\therefore \cos \frac{2 \pi}{5}=\frac{\sqrt{5}-1}{4}$ (since $\frac{2 \pi}{5}$ is frost quadiant $\therefore \cos \frac{2 \pi}{5}>0$)
c)(i) $z^{5}=(\cos \theta+u \sin \theta)^{5}$

$$
\begin{aligned}
& \text { by De Mow therem } \\
& \cos 5 \theta+i \sin 5 \theta= \cos ^{5} \theta+5 \cos ^{4} \theta i \sin \theta+10 \cos ^{3} \theta i^{2} \sin ^{2} \theta \\
&+10 \cos ^{3} \theta i^{3} \sin ^{3} \theta+5 \cos ^{2} \theta i^{4} \sin ^{4} \theta+\sin ^{5} \theta \\
&=\left(\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos ^{4} \theta \sin ^{4} \theta\right) \\
&+i\left(5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta\right)
\end{aligned}
$$

Equaty umagnon ports

$$
\begin{aligned}
\text { at. } \begin{aligned}
\sin 5 \theta & =5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta \\
= & 5\left(1-\sin ^{2} \theta\right) \sin ^{2} \theta-10\left(1-\sin ^{2} \theta\right) \sin ^{3} \theta+\sin ^{5} \theta \\
= & 5 \sin \theta-10 \sin ^{3} \theta+5 \sin ^{5} \theta \\
& -10 \sin ^{3} \theta+10 \sin ^{5} \theta \\
= & +\sin ^{5} \theta \\
= & \sin \theta-20 \sin ^{3} \theta+16 \sin ^{5} \theta \text { as requicel }
\end{aligned}
\end{aligned}
$$

(ii) $16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta=\sin \theta\left(16 \sin ^{2} \theta-20 \sin ^{2} \theta+5\right)$ sub $x=\sin \theta$.
connider $(1, \sin 59=0$ means $x=0$

$$
\text { or } 16 x^{4}-20 x^{2}+5=0
$$

dutunct sotutions of eqn (1)

$$
\begin{array}{r}
\text { sotution of egn } 11 \\
5 \theta=0, \pm \pi, \pm 2 \pi \\
\theta=0, \pm \frac{\pi}{5}, \pm \frac{2 \pi}{5} \quad \therefore \quad x=\sin \frac{\pi}{5}, \sin \left(\frac{-\pi}{5}\right), 1
\end{array}
$$

(iii) Tak, sum of pained Foots $=92$ are four vots of givien quathe and wing odd sy mety of sine for
$\sin \left(-\frac{t}{5}\right)=-\sin \frac{\pi}{5}$ gives $\sin \left(-\frac{\pi}{5}\right)=-\sin \frac{\pi}{5}$ gives
d) $P(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \cdots\left(x-\alpha_{n}\right)$
take logaunthms

$$
\begin{aligned}
& \text { take logaunhms } \\
& \ln P(x)=\ln \left(x-\alpha_{1}\right)+\ln \left(x-\alpha_{2}\right)+\ldots+\ln \left(x-\alpha_{n}\right)
\end{aligned}
$$ anfferentate int x

$$
\begin{aligned}
\frac{1}{P(x)} \times P^{\prime}(x) & =\frac{1}{x-\alpha_{1}}+\frac{1}{x-\alpha_{2}}+\cdots+\frac{1}{x-\alpha_{n}} \\
P^{\prime}(x) & =P(x)\left[\frac{1}{x-\alpha_{1}}+\frac{1}{x-\alpha_{2}}+\ldots+\frac{1}{x-\alpha_{n}}\right]
\end{aligned}
$$

Attematwre Meltod: (Extendel frodut YPule)

$$
\begin{aligned}
P(x)= & \left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right) \\
P^{\prime}(x)= & \mid \times\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \ldots\left(x-\alpha_{n}\right)+\left(x-\alpha_{1}\right) \times 1 \times\left(x-\alpha_{3}\right) \ldots\left(x-\alpha_{n}\right) \\
& +\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \times \mid \times\left(x-\alpha_{3}\right) \ldots\left(x-\alpha_{n}\right)+\ldots \\
& +\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n-1}\right) \times 1 \\
= & \frac{P(x)}{x-\alpha_{1}}+\frac{P(x)}{x-\alpha_{2}}+\frac{P(x)}{x-\alpha_{3}}+\ldots+\frac{P(x)}{x-\alpha_{n}} \\
= & P(x)\left[\frac{1}{x-\alpha_{1}}+\frac{1}{x-\alpha_{2}}+\frac{1}{x-\alpha_{3}}+\cdots+\frac{1}{x-\alpha_{n}}\right]
\end{aligned}
$$

(16) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad P(a \cos \theta, b \sin \theta) \quad Q(a \cos \phi, b \sin \phi)$

$$
y-b \sin \varnothing=\frac{b \sin \varnothing-b \sin \theta}{a \cos \theta-a \cos \theta}(x-a \cos \varnothing)
$$

Focal chord passes through (ae,0)

$$
\begin{aligned}
& -b \sin \phi(a \cos \phi-a \cos \theta)=(b \sin \phi-b \sin \theta) \\
& \sin \phi(\cos \theta-\cos \phi)=(\sin \phi-\sin \theta)(e-\cos \phi) \\
& \frac{\sin \phi(\cos \theta-\cos \phi)}{\sin \phi-\sin \theta}=e-\cos \phi \\
& \frac{\sin \phi \cos \theta-\sin \phi \cos \phi+\cos \phi(\sin \phi-\sin \theta)}{\sin \phi-\sin \theta}=e \\
& e=\frac{\sin (\phi-\theta)}{\sin \phi-\sin \theta}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \angle P R Q=90^{\circ} \Rightarrow m_{P R} \times m_{R Q}=-1 \quad R(a, 0) \\
& m_{P R}=\frac{b \sin \theta}{a(\cos \theta-1)} m_{R Q}=\frac{b \sin \phi}{a(\cos \phi-1)} \\
& \frac{b \sin \theta}{a(\cos \theta-1)} \times \frac{b \sin \phi}{a(\cos \phi-1)}=-1 \\
& =\frac{b^{2}}{a^{2}}=\frac{(\cos \theta-1)(\cos \phi-1)}{\sin \theta \sin \varnothing}
\end{aligned}
$$

Method 1: Double Angle Formulae

$$
\begin{aligned}
R H S & =\frac{\left(1-2 \sin ^{2}\left(\frac{\theta}{2}\right)-1\right)\left(1-2 \sin ^{2}\left(\frac{\theta}{2}\right)-1\right)}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \times 2 \sin \frac{\phi}{2} \cos \frac{\theta}{2}} \quad \sqrt{l} \quad \begin{array}{l}
\text { using } \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A
\end{array} \quad 1-2 \sin ^{2} A
\end{aligned}
$$

Method 2: Vising t-formulae
Cornier $\left(\frac{\cos \theta-1}{\sin \theta}\right)$
Let $t=\tan \theta / 2$

$$
=\frac{\frac{1-t^{2}}{1+t^{2}}-1}{\frac{2 t}{1+t^{2}}} \times\left(1+t^{2}\right) \quad / \cos \theta=\frac{1+t^{2}}{1+t^{2}}
$$

$$
=\frac{1-t^{2}-\left(1+t^{2}\right)}{2 t}
$$

$$
=\frac{-2 t^{2}}{2 t}
$$

$$
=-t
$$

$$
=-\tan \frac{\theta}{2}
$$

similar $\frac{\cos \phi-1}{\sin \phi}=-\tan \frac{\phi}{2}$

$$
\begin{aligned}
\therefore-\frac{b^{2}}{a^{2}} & =\left(-\tan \frac{\theta}{2}\right) \times\left(-\tan \frac{\phi}{2}\right) \\
& =\tan \frac{\theta}{2} \tan \frac{\phi}{2} \quad(\text { as require })
\end{aligned}
$$

b)

Shape wit
x ints deat
x-ments clearl.
Must indreate second arh syinifcantt, liges then fios
Note: P4 $\left(\frac{\pi}{2}, e^{\frac{\pi}{2}}\right)$ and (3, $\frac{3}{2},-e^{-\frac{12}{2 / 2}}$) were good pounto to makk BUT are not in fact the stationay po of thes function.
(ii)

$$
\begin{aligned}
& I=\int_{(k-1) \pi}^{k \pi} e^{x} \sin x d x \\
& \begin{array}{ll}
& \frac{d n}{d x}=e^{x} \\
=\left[-e^{x} \cos x\right]_{(k-1) \pi}^{-k \pi}-\int_{(k-1) \pi}^{k \pi}-e^{x} \cos x d x & U=e^{x} \\
& \frac{d V}{d x}=\cos x \\
& =\left[\begin{array}{lll}
x &]^{k \pi} & \frac{d U}{d x}=e^{x} \\
V=\sin x
\end{array}\right.
\end{array} \\
& =\left[-e^{x} \cos x\right]_{(k-1) \pi}^{k \pi}+\left[e^{x} \sin x\right]_{(k-1) \pi}^{k \pi}-\int_{(k-1) \pi}^{k \pi} e^{x} \sin x d x \\
& \cdot I=\left[e^{x}(\sin x-\cos x)\right]_{(k-1) \pi}^{k \pi}-I \\
& 2 工=\left[e^{x}(\sin x-\cos x)\right]_{(k-1) \pi}^{k \pi} \\
& =e^{k \pi}(\sin k \pi-\cos k \pi)-e^{(k-1) \pi}(\sin (k-1) \pi-\cos (k-1) \pi) \\
& \text { for mese } k=0 \\
& \sin k \pi=0 \\
& \sin (k-1) \pi=0 \\
& 2 I=-e^{k \pi} \cos k \pi+e^{(k-1) \pi} \cos (k-1) \pi
\end{aligned}
$$

$\cos k \pi=1$ if keven

$$
\begin{aligned}
\therefore \cos k \pi & =(-1)^{k} \operatorname{sinilar} / \cos (k-1) \pi=(-1)^{k-1} \\
\therefore 2 I & =(-1)^{k}\left(-e^{k \pi}\right)+(-1)^{k-1} e^{k k-1) \pi} \\
& =(-1)^{k-1} e^{k \pi}+(-1)^{k-1} e^{k \pi} \times e^{-\pi}
\end{aligned}
$$

$$
=(-1)^{k-1} e^{k \pi}\left(1+e^{-\pi}\right) \text { (as required) }
$$

Atthenaturel: $\begin{array}{rl}u=\sin x & \frac{d v}{d x}=e^{x} \\ \frac{d u}{d x}=\cos x & v=e^{x}\end{array}$
(iii) Required area

$$
\begin{aligned}
& =\frac{e^{\pi}\left(1+e^{-\pi}\right)\left(1+e^{\pi}\right)}{2} \\
& =\frac{\left(e^{\pi}+1\right)\left(e^{\pi}+1\right)}{2} \\
& =\frac{\left(e^{\pi}+1\right)^{2}}{2} u^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[e^{x} \sin x\right]-\left\{\left[e^{x} \cos x\right]-\int-\sin x e^{x} d x\right\} \\
& I=\left[e^{x} \sin x-e^{x} \cos x\right]-I \text { as before }
\end{aligned}
$$

${ }^{6 c}$ c)

(i)
$\angle A X B=60^{\circ}$ (Equtatenal $\left.\triangle X A B\right)$
$\therefore \angle A O B=120^{\circ}$ (Opposte \angle in cychi quadulateal $X A O B$)
siminity $\angle B O C=120^{\circ}$ (Equititenal $\triangle B C Y$ Lic qual $B O C Y$)
$\angle A O C=120^{\circ}$ (Andeo
$\angle A O C=120^{\circ}$ (Angles at pont O OR Tull Revolution)
(ii)

$$
\begin{aligned}
& \left.\angle A Z C=60^{\circ} \text { (Equatand } \triangle A Z C\right) \\
& \therefore \angle A O C+\angle A Z C=180^{\circ}
\end{aligned}
$$

$\therefore A O C Z$ is a cyclic quadutatemel (Oppoonte angles are supplamentary)
(iii) Constuit common chords $B O, O C$ and $O A$.

Cente of circle P his on perpendiculas besector of $O B$. Siminarl centre of second circle Q hes on same pesp. busector. Let mipoont of chood be point K. P, $K \not \& Q$ are colinew and $\angle O K Q$ is 90°
simbary define L as mipt. of common chard $O C$ O, L, C colnew and $\angle O L Q=90^{\circ}$ Hence $K Q L O$ a cyctio quadutateral since Henconte anales supplementary i, $\angle K O L+\angle K Q L=180^{\circ}$
but

$$
\begin{aligned}
\angle K O L & =\angle B O C \\
& =120^{\circ} \text { from (1) } \\
\therefore \angle K Q L & =\angle P Q R \\
& =60^{\circ}
\end{aligned}
$$

similar argument using other pans of common chords $O A+O B$ with mipout of $O A$ defined as M gives $P K O M$ as cyclic quadurateral
hence $\angle R P Q=60^{\circ}$
and for $O A \not O C, O L R M a c y c h i c$ quadulatewal hence $\angle P R Q=60^{\circ}$
showing an pain of to angles in $\triangle P Q R=60^{\circ}$
proves wrangle is equintateral. proves triangle is equilateral.

