Harder Extension 1 Circle Geometry

Converse Circle Theorems

(1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex.

ABC are concyclic with AB diameter (\angle in a semicircle $=90^{\circ}$)
(2) If an interval AB subtends the same angle at two points P and Q on the same side of AB , then $\mathrm{A}, \mathrm{B}, \mathrm{P}, \mathrm{Q}$ are concyclic.

ABQP is a cyclic quadrilateral
$(\angle '$ ' in same segment are $=)$
(3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic.

The Four Centres Of A Triangle

(1) The angle bisectors of the vertices are concurrent at the incentre which is the centre of the incircle, tangent to all three sides.

(2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices.

(3) The medians are concurrent at the centroid, and the centroid trisects each median.

(4) The altitudes are concurrent at the orthocentre.

> Interaction Between Geometry \& Trigonometry

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\text { diameter if circumcircle }
$$

e.g. (1990)

In the diagram, $A B$ is a fixed chord of a circle, P a variable point in the circle and $A C$ and $B D$ are perpendicular to $B P$ and $A P$ respectively.
(i) Show that $A B C D$ is a cyclic quadrilateral on a circle with $A B$ as diameter.

$$
\angle B D A=\angle A C B=90^{\circ}
$$

$\therefore A B C D$ is a cyclic quadrilateral
(given)
$(\angle '$ s in same segment are $=)$
$A B$ is diameter as \angle in semicircle $=90^{\circ}$

(ii) Show that triangles $P C D$ and $A P B$ are similar

$$
\begin{aligned}
& \angle A P B=\angle D P C \\
& \angle P D C=\angle P B A \\
& \therefore \triangle P D C\|\| P B A \\
& \hline
\end{aligned}
$$

$$
(\text { common } \angle ' \mathrm{~s})
$$

$$
\text { (exterior } \angle \text { cyclic quadrilateral) }
$$

(equiangular)

(iii) Show that as P varies, the segment $C D$ has constant length.

$$
\frac{C D}{A B}=\frac{P C}{A P}
$$

In $\triangle P C A, \frac{P C}{A P}=\cos P$

$$
\therefore \frac{C D}{A B}=\cos P
$$

$$
C D=A B \cos P
$$

Now, $\angle P$ is constant and $A B$ is fixed
$\therefore C D$ is constant
(iv) Find the locus of the midpoint of $C D$.
$A B C D$ is a cyclic quadrilateral with $A B$ diameter.

Let M be the midpoint of $C D$
O is the midpoint of $A B$
$O M$ is constant
(= chords are equidistant from the centre)
$\therefore M$ is a fixed distance from O

$$
\begin{aligned}
O M^{2} & =O C^{2}-M C^{2} \\
& =\left(\frac{1}{2} A B\right)^{2}-\left(\frac{1}{2} A B \cos P\right)^{2} \\
& =\frac{1}{4} A B^{2}-\frac{1}{4} A B^{2} \cos ^{2} P \\
& =\frac{1}{4} A B^{2} \sin ^{2} P \\
O M & =\frac{1}{2} A B \sin P
\end{aligned}
$$

\therefore locus is circle, centre O
and radius $=\frac{1}{2} A B \sin P$

2008 Extension 2 Question 7b)

In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant $Q R$ intersect at T. The bisector of $\angle P Q R$ meets $Q R$ at S so that $\angle Q P S=\angle R P S=\theta$. The intervals $R S, S Q$ and $P T$ have lengths a, b and c respectively.
(i) Show that $\angle T S P=\angle T P S$

$$
\begin{aligned}
& \angle R Q P=\angle R P T \\
& \angle T S P=\angle R Q P+\angle S P Q \\
& \angle T S P=\angle R P T+\theta
\end{aligned}
$$

(alternate segment theorem)
(exterior $\angle, \Delta S P Q$)
$\angle S P T=\angle R P T+\theta$
(common \angle)
$\therefore \angle S P T=\angle T S P$
(ii) Hence show that $\frac{1}{a}=\frac{1}{b}+\frac{1}{c}$

Past HSC Papers

"Cambridge" : Exercise 10A Patel : Exercise 10C*
$\triangle T P S$ is isosceles
(2 = sides)
$\therefore S T=c \quad(=$ sides in isosceles $\Delta)$
$P T^{2}=Q T \times R T$
(square of tangents=products of intercepts)

$$
\begin{aligned}
c^{2} & =(c+b)(c-a) \\
c^{2} & =c^{2}-a c+b c-a b \\
b c & =a c+a b \\
\frac{1}{a} & =\frac{1}{b}+\frac{1}{c}
\end{aligned}
$$

