Exponential Growth \& Decay

Growth and decay is proportional to population.

$$
\begin{aligned}
\frac{d P}{d t} & =k P \\
P & =A e^{k t}
\end{aligned}
$$

$P=$ population at time $t \quad k=$ growth(or decay) constant
$A=$ initial population $\quad t=$ time

$$
\text { Proof: } \begin{aligned}
& P=A e^{k t} \\
& \frac{d P}{d t}=k A e^{k t} \\
& \frac{d P}{d t}=k P \\
& \hline
\end{aligned}
$$

e.g.(i) The growth rate per hour of a population of bacteria is 10% of the population. The initial population is 1000000
a) Show that $P=A e^{0.1 t}$ is a solution to the differential equation.

$$
\begin{aligned}
P & =A e^{0.1 t} \\
\frac{d P}{d t} & =0.1 A e^{0.1 t} \\
& =0.1 P
\end{aligned}
$$

b) Determine the population after $3 \frac{1}{2}$ hours correct to 4 significant figures.

$$
\begin{aligned}
& \text { when } t=0, P=1000000 \quad \text { when } t=3.5, P=1000000 e^{0.1(3.5)} \\
& \therefore A=1000000 \\
& =1419000 \\
& P=1000000 e^{0.1 t}
\end{aligned}
$$

\therefore after $3 \frac{1}{2}$ hours there is 1419000 bacteria
(ii) On an island, the population in 1960 was 1732 and in 1970 it was 1260.
a) Find the annual growth rate to the nearest $\%$, assuming it is proportional to population.

$$
\begin{aligned}
\frac{d P}{d t} & =k P \\
P & =A e^{k t}
\end{aligned}
$$

when $t=0, P=1732$

$$
\begin{aligned}
& \therefore A=1732 \\
& P=1732 e^{k t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { when } t=10, P=1260 \\
& \text { i.e. } 1260=1732 e^{10 k} \\
& e^{10 k}=\frac{1260}{1732} \\
& 10 k=\log \left(\frac{1260}{1732}\right) \\
& k=\frac{1}{10} \log \left(\frac{1260}{1732}\right) \\
& k=-0.0318165
\end{aligned}
$$

\therefore growth rate is -3%
b) In how many years will the population be half that in 1960 ?
when $P=866,866=1732 e^{k t}$

$$
e^{k t}=\frac{1}{2}
$$

$$
k t=\log \frac{1}{2}
$$

$$
t=\frac{1}{k} \log \frac{1}{2}
$$

$$
t=21.786
$$

\therefore In 22 years the population has halved

Exercise 16B; 4, 5, 7, 8, 10, 11, 13

