Solving LHS > RHS

An efficient way of solving LHS > RHS is to rewrite the inequation as LHS - RHS > 0

This is because finding when functions are positive (or negative) can be discovered by investigating the critical points of their domain.

A function can only change sign at;

- an x-intercept OR
- a discontinuity in the domain

Bracket Interval Notation

[: interval endpoint is included

(: interval endpoint is not inculded

[a,b]: closed - all endpoints are included

(a,b) or [a,b) or (a,b]: open - an endpoint is not included

unbounded: if an interval extends to infinity in either direction

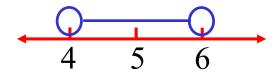
e.g. (i)
$$x > 5$$

open unbounded

interval

$$(5,\infty) = \{x : x > 5\}$$

$$(iii)$$
4 < x < 6

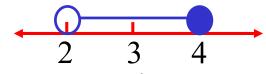


open bounded

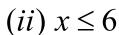
interval

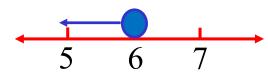
$$(4,6) = \{x : 4 < x < 6\}$$

$$(v)2 < x \le 4$$



bounded interval





closed unbounded interval

$$(-\infty, 6] = \{x : x \le 6\}$$

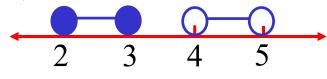
$$(iv)-2 \le x \le 1$$

closed bounded

interval

$$[-2,1] = \{x : -2 \le x \le 1\}$$

$$(vi)$$
 2 $\leq x \leq 3$ or 4 $< x < 5$



union of intervals

 $(2,4] = \{x : 2 < x \le 4\}$ [2,3]**U** $(4,5) = \{x : 2 \le x \le 3\}$ **U** $\{x : 4 < x < 5\}$

Composite Functions

When two or more functions combine to create a new function.

$$f(g(x)) = f \circ g(x)$$
 (substitute $g(x)$ into $f(x)$)

e.g.
$$f(x) = \frac{2x}{4-x}$$
 and $g(x) = \frac{1}{x^2}$

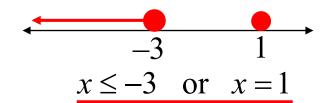
$$f \circ g(x) = \frac{2\left(\frac{1}{x^2}\right)}{4 - \frac{1}{x^2}}$$

$$g \circ f(x) = \frac{1}{\left(\frac{2x}{4 - x}\right)^2}$$

$$= \frac{2}{4x^2 - 1}$$

$$= \frac{(4 - x)^2}{4x^2}$$

e.g. (i)
$$(x-1)^2(x+3) \le 0$$



$$(ii) \frac{2}{x+3} < 5$$

$$\frac{2}{x+3} - 5 < 0$$

$$\frac{2-5(x+3)}{x+3} < 0$$

$$\frac{-13-5x}{x+3} < 0$$

$$-3$$

$$\frac{-13}{5}$$

$$\frac{13}{5}$$

$$\therefore x < -3 \text{ or } x > -\frac{13}{5}$$