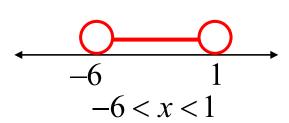
Solving Inequations

All inequations can be solved using two simple steps;

- 1. Find the **critical points** (boundaries) of the solution by solving the corresponding equation
- 2. **Test the regions** between the critical points to see if whether or not they are included in the solution


1. Linear Inequations

Solve like a normal equation, remembering to change the sign if you multiply or divide by a negative number.

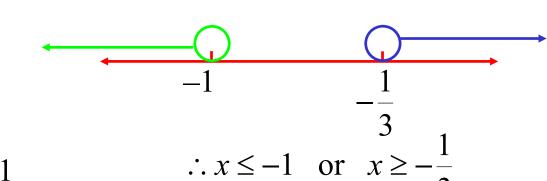
"if you change the sign, you change the sign"

2. Quadratic (and polynomials in general) Inequations

e.g.
$$6 - 5x - x^2 > 0$$

 $x^2 + 5x - 6 < 0$
 $(x + 6)(x - 1) < 0$

3. Absolute Value Inequations


Solve using the definition of absolute value

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$$

e.g.
$$|3x + 2| \ge 1$$

$$3x + 2 \ge 1$$
 or $-(3x + 2) \ge 1$
 $3x \ge -1$ $-3x - 2 \ge 1$

$$x \ge -\frac{1}{3} \qquad -3x \ge 3$$
$$x \le -1$$

4. Inequations with Pronumerals in the Denominator

e.g.
$$\frac{2}{x+3} < 5$$
 $\frac{2}{x+3} = 5$
 $x+3 \neq 0$ $2 = 5x+15$
 $5x = -13$
 $x \neq -3$ 13

$$\therefore x < -3 \text{ or } x > -\frac{15}{5}$$

Note: 3 & 4 can be turned into turn it into a quadratic inequation

$$|3x + 2| \ge 1$$

$$(3x+2)^2 \ge 1$$

$$(3x+2)^{2} \ge 1$$

$$9x^{2} + 12x + 4 \ge 1$$

$$9x^{2} + 12x + 3 \ge 0$$

$$3x^{2} + 4x + 1 \ge 0$$

$$(3x+1)(x+1) \ge 0$$

$$\therefore x \le -1 \quad \text{or} \quad x \ge -\frac{1}{3}$$

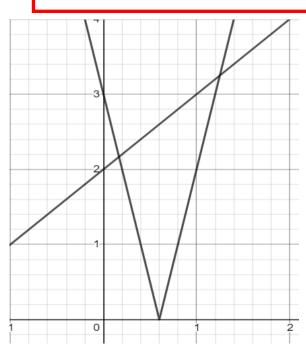
$$(ii)\frac{2}{x+3} < 5$$

$$2(x+3) < 5(x+3)^{2}$$

$$5(x+3)^{2} - 2(x+3) > 0$$

$$(x+3)(5x+13) > 0$$
∴ $x < -3$ or $x > -\frac{13}{5}$

multiply both sides by the denominator squared (to ensure it is a positive number, so the sign stays the same)


Using Graphs to Solve Inequations

When we solved LHS – RHS > 0 graphically, we were essentially asking;

when is y = LHS - RHS above the line y=0?

f(x) > g(x) can be solved graphically, using the same idea

when is
$$y = f(x)$$
 above the line $y = g(x)$?

e.g.
$$|5x - 3| > x + 2$$

 $|5x - 3| = x + 2$

$$5x - 3 = x + 2$$
 $3 - 5x = x + 2$
 $4x = 5$ $6x = 1$
 $x = \frac{5}{4}$ $x = \frac{1}{6}$
 $x < \frac{1}{6}$ or $x > \frac{5}{4}$

computer graphing packages such as Desmos make this option more attractive

Exercise 3D; 4c, 6e, 7d, 8c, 9b, 12b(i), 13c, 14a, 17, 18 Exercise 3E; 1bdf, 2bdf, 3c, 4c, 9d, 10d, 11b, 13bdf, 15, 16, 19bc, 20, 22