Dilations

horizontal dilation (stretch) replace x with $\frac{x}{a}$ $y=f\left(\frac{x}{a}\right)$
curve is stretched horizontally by a factor of a

$$
\text { (if } a>1 \text {, curve is shallower) }
$$

domain may be altered, range will be unchanged
vertical dilation (stretch) replace y with $\frac{y}{a}$

$$
\frac{y}{a}=f(x) \text { OR } \quad y=a f(x)
$$

curve is stretched vertically by a factor of a

$$
\text { (if } a>1 \text {, curve is steeper) }
$$

domain unchanged, range may be altered
e.g. (i) on one graph draw
a) $y=x, y=\frac{1}{2} x, y=2 x y=2 x$
(ii) Sketch $x^{2}+\frac{y^{2}}{4}=1$

1. basic curve: $x^{2}+y^{2}=1$
2. $\frac{y^{2}}{4}=\left(\frac{y}{2}\right)^{2}, \therefore k=2$
stretch vertically by a factor of 2
b) $y=x^{2}, y=\frac{1}{2} x^{2}, y=2 x^{2}$

Enlargements

An enlargement is when the same dilation factor is applied both horizontally and vertically.

$$
f(x, y) \Rightarrow f\left(\frac{x}{a}, \frac{y}{a}\right)
$$

e.g. The circle $(x-1)^{2}+(y+2)^{2}=1$ is enlarged by a factor of 2 .

Using the origin as the centre of enlargement, find the circle's new equation

$$
\begin{aligned}
&(x-1)^{2}+(y+2)^{2}=1 \Rightarrow\left(\frac{x}{2}-1\right)^{2}+\left(\frac{y}{2}+2\right)^{2}=1 \\
& \underline{(x-2)^{2}+(y+4)^{2}}=4
\end{aligned}
$$

Not all transformations commute

 A mathematical operation commutes if the order of the objects being operated on does not matteraddition and multiplication commute

$$
\begin{aligned}
3+4 & =4+3 \\
3 \times 4 & =4 \times 3
\end{aligned}
$$

subtraction and division do not commute

$$
\begin{gathered}
3-4 \neq 4-3 \\
3 \div 4 \neq 4 \div 3
\end{gathered}
$$

Transformations can be done in any order, with the exception of a dilation and a translation in the same direction

(1) reflect in $x=0$ then shift right

(2) shift right then reflect in $x=0$
e.g. Determine the equation after $y=x^{2}$ has been;
(i) shifted up 1 unit then reflected vertically

$$
x^{2} \rightarrow x^{2}+1 \rightarrow-\left(x^{2}+1\right) \Rightarrow y=-x^{2}-1
$$

(ii) reflected vertically the shifted up 1 unit

$$
x^{2} \rightarrow-x^{2} \rightarrow-x^{2}+1 \quad \Rightarrow y=1-x^{2}
$$

Exercise 3H; 1aceg, 2bd, 3, 4, 5a, 6a, 8, 9ad, 10, 13, 14, 15a, 17

Exercise 3I; 1 to 5, 6bdfh, 8ab, 12

