The Language of Logic

Proposition: a sentence proposing an idea that can be true (T) or false (F), but not both.

- e.g. "it is raining" is a proposition

 "is it raining" is NOT a proposition
- Logic has its own language with an alphabet consisting of;
- (i) propositional variables: e.g. $p_1, p_2, ..., q, X, Y, \Phi$
- (ii) punctuation symbols: the two parentheses i.e. (and)
- (iii) logical symbols: connectives
 - ⇒ implication; used for "if then" statements
- \neg (or \sim) negation; the logical complement to a proposition
 - ⇔ equivalence; propositions that are logically equivalent
 - A and; conjunction of two propositions
 - V or; disjunction of two propositions
 - (iv) quantifiers: \exists (there exists) and \forall (for all)

Statements are;

- (i) propositions *OR*
- (ii) a series of propositions connected by punctuation symbols or logical symbols

A logically valid argument: a list of propositions from which a conclusion follows.

This is also called a **proof**

example: a situation that demonstrates the assertion of a proposition

counterexample: an example that demonstrates that a proposition is not true in general

It is used to invalidate an argument

Negation

The negation of a statement changes its logical value i.e. T to F or F to T

e.g. (i) X: the number is even (6 would be T)

 $\neg X$: the number is not even (6 would be F)

(ii) Y: all birds are black

 \neg Y: at least one bird is not black or not all birds are black

or some birds are not black

(iii) Z: $\exists x \in \mathbb{R} : x^2 < 0$

$$\neg Z: \forall x \in \mathbb{R}, x^2 \ge 0$$

(there exists a real number such that its square is negative)

(for all real numbers, their squares are greater than or equal to zero)

$$\neg(X \land Y) \iff \neg X \lor \neg Y$$
$$\neg(X \lor Y) \iff \neg X \land \neg Y$$

$$\neg (X \lor Y) \iff \neg X \land \neg Y$$

Implication

(if then statements)

$$P \Rightarrow Q$$

If P is true, then Q must also be true i.e P implies Q

P is the **premise** of the implication, and Q is the **conclusion**

- P is a **sufficient** condition for Q
- Q is a **necessary** condition for P
- e.g. X: you receive a Band E4 for Extension 2
 - Y: you score 90% or above in Extension 2

$$X \Rightarrow Y$$

Receiving an E4 is sufficient to conclude you scored 90% or above Scoring 90% or above is necessary to receive an E4

Converse

To find the converse of an implication, reverse the implication

the converse of
$$P \Rightarrow Q$$
 is $Q \Rightarrow P$

The converse of a true statement may or may not be true. Similarly the converse of a false statement may or may not be false

e.g. X: it is raining

Y: the grass is wet

Whilst it may be true that $X \Rightarrow Y$,

it is not necessarily true that $Y \Rightarrow X$

Equivalence

(if and only if statements, iff)

$$P \Leftrightarrow Q$$

Two statements are equivalent if each is the consequence of the other e.g. X: ABCD is a parallelogram $(X \Rightarrow Y) \land (Y \Rightarrow X)$

Y: diagonals AC and BD bisect

$$\therefore X \Leftrightarrow Y$$

ABCD is a parallelogram iff the diagonals bisect each other

Contrapositive

The contrapositive of an implication is formed when you negate the converse.

original statement:
$$P \Rightarrow Q$$

contrapositive statement: $\neg Q \Rightarrow \neg P$

$$P \Rightarrow Q \Leftrightarrow \neg Q \Rightarrow \neg P$$

An implication is logically equivalent to its contrapositive

e.g. X: a polygon is a triangle

Y: interior angle sum is 180°

 $X \Rightarrow Y$: if a polygon is a triangle then the interior angle sum is 180°

 $\neg Y \Rightarrow \neg X$: if the interior angle sum is not 180° then the polygon is not a triangle

$$X \Rightarrow Y \Leftrightarrow \neg Y \Rightarrow \neg X$$

Truth Tables

P	Q	$\neg P$	$P \wedge Q$	PVQ	$P \Rightarrow Q$	$P \Leftrightarrow Q$	
T	T	F	T	T	T	T	
T	F	F	F	T	F	F	
F	T	T	F	T	T	F	
F	F	T	F	F	T	T	

P: the cat is white Q: the dog is black e.g. Alfred, Kurt and Rudolf are accused of stealing and selling copies of an exam. At the inquiry, they testify as follows;

Alfred: Kurt is guilty and Rudolf is innocent

Kurt: If Alfred is guilty, then so is Rudolf

Rudolf: I am innocent, but at least one of the others is guilty

- (i) can everyone be telling the truth?
- (ii) if everyone is innocent, who lied?
- (iii) Assuming everyone's testimony is true, who is guilty?
- (iv) If the innocent tell the truth and the guilty lie, who is guilty?

A: Alfred is guilty K: Kurt is guilty R: Rudolf is guilty

			Alfred			Kurt			Rudolf				
A	K	R	$K \wedge \neg R$			$A \Rightarrow R$			$\neg R \land (A \lor K)$				
T	T	T	T	F	F	T	T	T	F	F	T	T	T
T	T	F	T	T	Т	Т	F	F	T	T	T	T	T
T	F	T	F	F	F	T	T	T	F	F	T	T	F
T	F	F	F	F	T	T	F	F	T	T	T	T	F
F	T	T	T	F	F	F	Ţ	Т	F	F	F	T	T
F	T	F	T	T	T	F	T	F	T	T	F	T	T
F	F	T	F	F	F	F	T	T	F	F	F	F	F
F	F	F	F	F	T	F	T	F	T	F	F	F	F

- (i) can everyone be telling the truth? Yes
- (ii) if everyone is innocent, who lied? Alfred and Rudolf
- (iii) Assuming everyone's testimony is true, who is guilty? Kurt
- (iv) If the innocent tell the truth and the guilty lie, who is guilty?

Alfred and Rudolf

Exercise 2A;1, 2acef, 3, 4acdgh, 5bdf, 6ad, 7, 8, 9acf, 10, 11, 12a, 13, 15, 16