Factorial Notation

$$
\left\{\begin{array}{l}
0!=1 \\
n!=n \times(n-1)!, \text { for } n \geq 1
\end{array}\right.
$$

From this definition we can conclude;

$$
\begin{gathered}
1!=1 \times 0!=1 \times 1=1 \\
2!=2 \times 1!=2 \times 1=2 \\
3!=3 \times 2!=3 \times 2=6 \\
4!=4 \times 3!=4 \times 6=24 \\
\vdots \\
\vdots \\
n!=n \times(n-1)!=n(n-1) \times(n-2)! \\
n!=n(n-1)(n-2)(n-3) \cdots 3 \times 2 \times 1
\end{gathered}
$$

$$
\begin{aligned}
& \text { e.g. (i) } \frac{12!}{9!}=\frac{12 \times 11!}{9!} \\
& \text { (ii) } \frac{16!}{10!\times 7!}=\frac{16 \times 15 \times 14 \times 13 \times 12 \times 11}{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \\
& =\frac{12 \times 11 \times 10!}{9!} \\
& =\frac{12 \times 11 \times 10 \times 9!}{9!} \\
& =12 \times 11 \times 10 \\
& =\underline{1320} \\
& \text { (iii }) \frac{1}{k!}+\frac{1}{(k-2)!}=\frac{k(k-1)+1}{k(k-1)(k-2)!} \\
& =\frac{k^{2}-k+1}{k!} \\
& =\frac{16 \times 13 \times 13 \times 12 \times 11}{6 \times 5 \times 4 \times 3} \\
& =\frac{4.6 \times 13 \times 12^{2} \times 11}{8 \times 4} \\
& =4 \times 13 \times 2 \times 11 \\
& =4 \times 26 \times 11 \\
& =104 \times 11 \\
& =\underline{1144}
\end{aligned}
$$

The Basic Counting Principle

If one event can happen in m different ways and after this another event can happen in n different ways, then the two events can occur in $m n$ different ways.
e.g. 3 dice are rolled
(i) How many ways can the three dice fall?
the 1st die has 6 possibilities

$$
\begin{aligned}
\text { Ways } & =6 \times 6 \times 6 \longleftarrow \\
& =\underline{216}
\end{aligned}
$$

The number of ways of arranging n distinct objects, with replacement, in k different ways is n^{k}
(ii) How many ways can all three dice show the same number?
the 1st die has 6 possibilities

(iii) What is the probability that all three dice show the same number?

$$
\begin{aligned}
P(\text { all } 3 \text { the same }) & =\frac{6}{216} \\
& =\frac{1}{36}
\end{aligned}
$$

1996 Extension 1 HSC Q5c)

Mice are placed in the centre of a maze which has five exits.
Each mouse is equally likely to leave the maze through any of the five exits. Thus, the probability of any given mouse leaving by a particular exit is $\frac{1}{5}$
Four mice, $A, B, \stackrel{5}{C}$ and D are put into the maze and behave independently.
(i) What is the probability that A, B, C and D all come out the same exit?
Total possibilities $=5^{4}$

$$
=625
$$

$$
P(\text { all use same exit })=\frac{5}{625}
$$

First mouse can go through any door

$$
=\frac{1}{125}
$$

Ways go through same door $=5 \times 1 \times 1 \times 1$ must go through same door
(ii) What is the probability that A, B and C come out the same exit and D comes out a different exit?
D can go through any door

Ways $A B C$ use same exit, D uses different exit $=5 \times 4 \times 1 \times 1$

Other mice must go through the same door as D
$P(A B C$ use same exit, D uses different exit $)=\frac{20}{625}$

$$
=\frac{4}{125}
$$

(iii) What is the probability that any three of the four mice come out the same exit and the other comes out a different exit?
$P(D$ uses different exit $)=\frac{4}{125}$
$\therefore P(A$ uses different exit $)=\frac{4}{125}$
$P(B$ uses different exit $)=\frac{4}{125}$
$P(C$ uses different exit $)=\frac{4}{125}$
$\therefore P($ any mouse uses different exit $)=4 \times \frac{4}{125}$

$$
=\frac{16}{125}
$$

(iv) What is the probability that no more than two mice come out the same exit?
$P($ no more than 2 use same exit $)=1-P($ all same $)-P(3$ use same $)$

$$
\begin{aligned}
& =1-\frac{1}{125}-\frac{16}{125} \\
& =\frac{108}{125}
\end{aligned}
$$

Permutations

A permutation is an ordered set of objects
i.e. an arrangement

Case 1: Ordered Sets of \boldsymbol{n} Different Objects, from a Set of \boldsymbol{n} Such Objects
(i.e. use all of the objects)

If we arrange n different objects in a line, the number of ways we could arrange them are;

e.g. In how many ways can 5 boys and 4 girls be arranged in a line if;
(i) there are no restrictions?

$$
\begin{array}{rlrl}
\text { Arrangements } & =9! & \text { With no restrictions, arrange } 9 \text { people } \\
& =\underline{362880} \quad \text { gender does not matter }
\end{array}
$$

(ii) boys and girls alternate?
(ALWAYS look after any restrictions first)
first person MUST
number of ways of

(iii) What is the probability of the boys and girls alternating?

$$
\begin{aligned}
P(\text { boys \& girls alternate }) & =\frac{2880}{362880} \\
& =\frac{1}{126}
\end{aligned}
$$

(iv) Two girls wish to be together?

the number of ways the girls can be arranged	number of ways of arranging 8 objects
Arrangements $=2!\times 8!$	(2 girls) + 7 others
$=80640$	

Case 2: Ordered Sets of \boldsymbol{k} Different Objects, from a Set of \boldsymbol{n} Such Objects (k < n)

(i.e. use some of the objects)

If we have n different objects in a line, but only want to arrange k of them, the number of ways we could arrange them are;
possibilities

e.g. (i) From the letters of the word PROBLEMS how many 5 letter words are possible if;
a) there are no restrictions?

$$
\begin{aligned}
\text { Words } & ={ }^{8} P_{5} \\
& =6720
\end{aligned}
$$

b) they must begin with \mathbf{P} ?
the number of ways P
can be placed first

c) \mathbf{P} is included, but not at the beginning, and \mathbf{M} is excluded?
the number of positions P

$$
\begin{aligned}
& \text { can be placed in } \\
& \begin{aligned}
\text { Words } & =4 \times{ }^{6} P_{4}{ }^{4} \\
& =1440
\end{aligned}
\end{aligned}
$$

Question now becomes

$$
\text { how many } 4 \text { letter words }
$$

$$
\text { Words }=4 \times{ }^{6} P_{4} \quad \text { ROBLES }
$$

(ii) Six people are in a boat with eight seats, for on each side.

What is the probability that Bill and Ted are on the left side and
Greg is on the right?
Ways (no restrictions) $={ }^{8} P_{6}$

$$
=20160
$$

Ways Bill \& Ted Ways Greg

2006 Extension 1 HSC Q3c)

Sophia has five coloured blocks: one red, one blue, one green, one yellow and one white.

She stacks two, three, four or five blocks on top of one another to form a vertical tower.
(i) How many different towers are there that she could form that are three blocks high?

$$
\begin{aligned}
\text { Towers } & ={ }^{5} P_{3} \\
& =60
\end{aligned}
$$

(ii) How many different towers can she form in total?

2 block Towers $={ }^{5} P_{2}=20$
3 block Towers $={ }^{5} P_{3}=60$
4 block Towers $={ }^{5} P_{4}=120$
5 block Towers $={ }^{5} P_{5}=120$
Total number of Towers $=320$

Exercise 14A; 2bdfg, 3adfh, 5aceg, 6bdf, 7, 9, 12, 13

Exercise 14B; 2, 4, 6, 8ac, 10, 12, 14, $16,18,20,23,25$

Exercise 14C; 2, 4, 5, 7, 9, 10, 12, 14, $16,18,19,21,22$

