Finance Formulae

$\underline{\text { Simple Interest }}$

$$
I=P R T
$$

$I=$ simple interest $R=$ interest rate as a decimal (or fraction)
$P=$ principal $\quad T=$ time periods
e.g. If $\$ 3000$ is invested for seven years at 6% p.a. simple interest, how much will it be worth after seven years?

$$
\begin{aligned}
I & =P R T \\
I & =(3000)(0.06)(7) \\
& =1260
\end{aligned}
$$

\therefore Investment is worth $\$ 4260$ after 7 years

Compound Interest

$$
A_{n}=P R^{n}
$$

Note: general term of a geometric series
$A_{n}=$ amount after n time periods $\quad P=$ principal
$R=1+$ interest rate as a decimal(or fraction)
$n=$ time periods
Note: interest rate and time periods must match the compounding time e.g. If $\$ 3000$ is invested for seven years at 6% p.a, how much will it be worth after seven years if;
a) compounded annually?

$$
\begin{aligned}
& A_{n}=P R^{n} \\
& A_{7}=3000(1.06)^{7} \\
& A_{7}=4510.89
\end{aligned}
$$

\therefore Investment is worth
$\$ 4510.89$ after 7 years
b) compounded monthly?

$$
\begin{aligned}
A_{n} & =P R^{n} \\
A_{84} & =3000(1.005)^{84} \\
A_{84} & =4561.11
\end{aligned}
$$

\therefore Investment is worth
$\$ 4561.11$ after 7 years

Depreciation

$$
A_{n}=P R^{n}
$$

$A_{n}=$ amount after n time periods $\quad P=$ principal
$R=1$ - depreciation rate as a decimal(or fraction)
$n=$ time periods
Note: depreciation rate and time periods must match the depreciation time
e.g. An espresso machine bought for $\$ 15000$ on $1^{\text {st }}$ January 2001 depreciates at a rate of 12.5% p.a.
a) What will its value be on $1^{\text {st }}$ January 2010 ?

$$
\begin{aligned}
A_{n} & =P R^{n} \\
A_{9} & =15000(0.875)^{9} \\
A_{9} & =4509.87
\end{aligned}
$$

\therefore Machine is worth $\$ 4509.87$ after 9 years
b) During which year will the value drop below 10% of the original cost?

$$
\begin{aligned}
& A_{n}=P R^{n} \\
& 15000(0.875)^{n}<1500 \\
&(0.875)^{n}<0.1 \\
& \log (0.875)^{n}<\log 0.1 \\
& n \log 0.875<\log 0.1 \\
& n>\frac{\log 0.1}{\log 0.875} \\
& n>17.24377353
\end{aligned}
$$

\therefore during the 18 th year (i.e. 2018) its value will drop to 10% the original cost

Exercise 14C; 5, 6, 7, 9a, 10, 12, 15, 17, 19, 20

