Projectile Motion

$$
\begin{array}{ll}
\ddot{x}=0 & \ddot{y}=-g \\
\dot{x}=v \cos \theta & \dot{y}=v \sin \theta-g t \\
x=v t \cos \theta & y=v t \sin \theta-\frac{1}{2} g t^{2}
\end{array}
$$

Note: parametric coordinates of a parabola
$t=\frac{x}{v \cos \theta}$
$y=-\frac{g x^{2}}{2 v^{2} \cos ^{2} \theta}+\frac{x \sin \theta}{\cos \theta}$
$y=-\frac{g x^{2}}{2 v^{2}} \sec ^{2} \theta+x \tan \theta$

$$
y=-\frac{g x^{2}}{2 v^{2}}\left(\tan ^{2} \theta+1\right)+x \tan \theta
$$

Common Questions

(1) What is the range of the particle?
roots of the quadratic

$$
\begin{gathered}
-\frac{g x^{2}}{2 v^{2}} \sec ^{2} \theta+x \tan \theta=0 \\
\frac{x \sin \theta}{\cos \theta}-\frac{g x^{2}}{2 v^{2} \cos ^{2} \theta}=0 \\
\frac{x}{\cos \theta}\left(\sin \theta-\frac{g x}{2 v^{2} \cos \theta}\right)=0 \\
x=0 \quad \text { or } \quad x=\frac{2 v^{2} \sin \theta \cos \theta}{g} \\
x=\frac{v^{2}}{g} \sin 2 \theta
\end{gathered}
$$

\therefore range of the particle is $\frac{v^{2}}{g} \sin 2 \theta$ metres
(2) What is the greatest height of the particle? vertex of the parabola

$$
\begin{aligned}
\text { greatest height } & =-\frac{\Delta}{4 a} \\
& =-\frac{\tan ^{2} \theta}{4\left(\frac{-g \sec ^{2} \theta}{2 v^{2}}\right)} \\
& =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \times \frac{v^{2} \cos ^{2} \theta}{2 g} \\
& =\frac{v^{2} \sin ^{2} \theta}{2 g}
\end{aligned} \quad \begin{aligned}
\therefore \text { greatest height is } \frac{v^{2} \sin ^{2} \theta}{2 g} \text { metres }
\end{aligned}
$$

(4) What angle does the particle make with the ground?
(i) find slope of the tangent
(ii) $m=\tan \theta$
e.g. A ball is thrown with an initial velocity of $25 \mathrm{~m} / \mathrm{s}$ at an angle of

$$
\theta=\tan ^{-1} \frac{3}{4} \text { to the ground. Determine; }
$$

a) the cartesian equation of the path

$$
\begin{array}{ll}
x=20 t & y=-5 t^{2}+15 t \\
t=\frac{x}{20} & y=-5\left(\frac{x}{20}\right)^{2}+15\left(\frac{x}{20}\right) \\
y & =\frac{-x^{2}}{80}+\frac{3 x}{4}
\end{array}
$$

b) greatest height is y value of the vertex $\quad y=-\frac{\Delta}{4 a}$

$$
=-\frac{9}{16} \times-\frac{20}{1}
$$

$$
=\frac{45}{4}
$$

\therefore greatest height is $11 \frac{1}{4} \mathrm{~m}$ above the ground
c) range

$$
\begin{aligned}
y & =\frac{-x^{2}}{80}+\frac{3 x}{4} \\
& =\frac{x}{4}\left(3-\frac{x}{20}\right)
\end{aligned}
$$

roots are 0 and 60
\therefore range is 60 m
d) velocity and direction of the ball after $\frac{1}{2}$ second

$$
\begin{aligned}
& y=\frac{-x^{2}}{80}+\frac{3 x}{4} \quad \text { when } t=\frac{1}{2}, x=10 \quad \frac{d y}{d x}=\frac{-10}{40}+\frac{3}{4} \\
& \frac{d y}{d x}=\frac{-x}{40}+\frac{3}{4} \\
& =\frac{1}{2} \\
& \tan \theta=\frac{1}{2} \\
& v=\frac{x^{\theta}}{t \cos \theta}=26^{\circ} 34^{\prime} \\
& =\frac{10}{\frac{1}{2} \times \frac{2}{\sqrt{5}}} \\
& =10 \sqrt{5}
\end{aligned}
$$

\therefore after $\frac{1}{2}$ second, velocity $=10 \sqrt{5} \mathrm{~m} / \mathrm{s}$ and it is traveling at an angle of $26^{\circ} 34^{\prime}$ to the horizontal

