Polynomial Functions

A real polynomial P(x) of degree *n* is an expression of the form;

 $P(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{n-1} x^{n-1} + p_n x^n$ where: $p_n \neq 0$ $n \ge 0$ and is an integer

coefficients: $p_0, p_1, p_2, \cdots, p_n$

index (exponent): the powers of the pronumerals.

<u>degree (order)</u>: the highest index of the polynomial. The polynomial is called **"polynomial of degree** *n*"

leading term: $p_n x^n$

leading coefficient: p_n

monic polynomial: leading coefficient is equal to one.

 $\underline{P(x) = 0}$: polynomial equation

y = P(x): polynomial function

<u>roots</u>: solutions to the polynomial equation P(x) = 0<u>zeros</u>: the values of *x* that make polynomial P(x) zero. i.e. the *x* intercepts of the graph of the polynomial.

e.g. (i) Which of the following are polynomials?

a) $5x^{3} - 7x^{\frac{1}{2}} - 2$ NO, can't have fraction as a power b) $\frac{4}{x^{2} + 3}$ NO, can't have negative as a power $4(x^{2} + 3)^{-1}$ c) $\frac{x^{2} + 3}{4}$ YES, $\frac{1}{4}x^{2} + \frac{3}{4}$ Exercise 10A; 1, 2acehi, 3bdf, 5bd, 6b, 7, 9d, 11, 13 d) 7 YES, $7x^{0}$

(*ii*) Determine whether $P(x) = x^3 (8x+1) + 7x - 11 - (2x^2+1)(4x^2-3)$ is monic and state its degree.

$$P(x) = 8x^{4} + x^{3} + 7x - 11 - 8x^{4} + 6x^{2} - 4x^{2} + 3$$

= x^{3} + 2x^{2} + 7x - 8
\therefore monic, degree = 3