Expected Value

Let X be a continuous random variable, then the expected value of X is;
$E(X)=\int_{-\infty}^{\infty} x f(x) d x$

Note: $\mathrm{E}(X)=\mu \quad$ (arithmetic mean)
e.g. It is proposed to model the quarterly salary, X, measured in thousands of dollars, paid to salespeople in a large company by the probability density function

$$
f(x)= \begin{cases}2560 x^{-\frac{7}{2}} & x \geq 16 \\ 0 & \text { elsewhere }\end{cases}
$$

By looking at the median and mean, describe the distribution of the

$$
\begin{array}{rlrl}
2560 \int_{16}^{M} x^{-\frac{7}{2}} d x & =\frac{1}{2} & \mu & =2560 \int_{16}^{\infty} x \times x^{-\frac{7}{2}} d x \\
-1024\left[x^{-\frac{5}{2}}\right]_{16}^{M} & =\frac{1}{2} \\
M^{-\frac{5}{2}}-\frac{1}{1024} & =-\frac{1}{2048} & =2560 \int_{16}^{\infty} x^{-\frac{5}{2}} d x \\
M & =\left(\frac{1}{2048}\right)^{-\frac{2}{5}} & & =-\frac{5120}{3}\left[x^{-\frac{3}{2}}=0\right. \\
& & =-\frac{5120}{3} \times-\frac{1}{64} \\
16
\end{array}
$$

$$
=21.112
$$

mean quarterly salary is \$26 667 median quarterly salary is $\$ 21112$
$\underline{\text { as median }<\text { mean, the distribution is positively skewed }}$

Variance

Let X be a continuous random variable, then the variance of X is;

$$
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mu^{2}
$$

where $E\left(X^{2}\right)=\int^{\infty} x^{2} f(x) d x$
e.g. Find the standard deviation of the quarterly salaries.
$\operatorname{Var}(X)=2560 \int_{16}^{\infty} x^{2} \times x^{-\frac{7}{2}} d x-\left(\frac{80}{3}\right)^{2}$

$$
=2560 \int_{16}^{\infty} x^{-\frac{3}{2}} d x-\left(\frac{6400}{9}\right)
$$

$$
\begin{array}{rlrl}
\operatorname{Var}(X) & =-5120\left[x^{-\frac{1}{2}}\right]_{16}^{\infty}-\frac{6400}{9} & \begin{aligned}
\sigma & =\sqrt{568.889} \\
& =23.851
\end{aligned} \\
& =-5120 \times-\frac{1}{4}-\frac{6400}{9} & & \\
& =568.889 & &
\end{array}
$$

standard deviation of the quarterly salary is \$23851

