Investing Money by Regular Instalments

Annuities

An annuity is a compound interest investment from which payments are made or received on a regular basis for a fixed period of time. ordinary annuity: deposit the same amount at the end of each compounding period e.g. loans
annuity due: deposit the same amount at the beginning of each compounding period e.g. superannuation fund
future value (FV): the total value of the investment at the end of the term of the investment.
present value (PV): the single amount that could be initially invested to produce the same FV over a given time period
Note: annuities are not to be confused with the financial product known as an "annuity", whilst this product is a type of annuity, it is NOT the only type.

Annuity Due

2002 HSC Question 9b)

A superannuation fund pays an interest rate of 8.75% p.a. which compounds annually. Stephanie decides to invest $\$ 5000$ in the fund at the beginning of each year, commencing on 1 January 2003.
a) What will be the value of Stephanie's superannuation when she retires on 31 December 2023?

$$
\begin{array}{cc}
A_{21}=5000(1.0875)^{21} & \text { amount invested for 21 years } \\
A_{20}=5000(1.0875)^{20} & \text { amount invested for 20 years } \\
A_{19}=5000(1.0875)^{19} & \text { amount invested for 19 years } \\
\vdots & \\
\vdots & \\
A_{1}=5000(1.0875)^{1} & \text { amount invested for 1 year }
\end{array}
$$

$$
\begin{aligned}
\text { Amount } & =5000(1.0875)^{21}+5000(1.0875)^{20} \ldots+5000(1.0875) \\
& \quad a=5000(1.0875), r=1.0875, n=21 \\
& =S_{21} \\
& =\frac{5000(1.0875)\left(1.0875^{21}-1\right)}{0.0875} \\
& =\$ 299604.86
\end{aligned}
$$

b^{*}) Find the year when the fund first exceeds $\$ 200000$.

$$
\begin{aligned}
\text { Amount } & =5000(1.0875)+5000(1.0875)^{2}+\ldots+5000(1.0875)^{n} \\
& =S_{n} \\
\text { i.e } & S_{n}>200000
\end{aligned}
$$

$\frac{5000(1.0875)\left(1.0875^{n}-1\right)}{0.0875}>200000$

$$
\begin{aligned}
\left(1.0875^{n}-1\right) & >\frac{280}{87} \\
1.0875^{n} & >\frac{367}{87} \\
\log \left(1.0875^{n}\right) & >\log \left(\frac{367}{87}\right) \\
n \log (1.0875) & >\log \left(\frac{367}{87}\right) \\
n & >\frac{\log \left(\frac{367}{87}\right)}{\log (1.0875)} \\
n & >17.16056585 \\
\therefore n & =18
\end{aligned}
$$

Thus 2021 is the first year when the fund exceeds $\$ 200000$
c^{*}) What annual instalment would have produced $\$ 1000000$ by $31^{\text {st }}$ December 2020?

$$
\begin{gathered}
\text { Amount }=P(1.0875)^{18}+P(1.0875)^{17}+\ldots+P(1.0875) \\
a=P(1.0875), r=1.0875, n=18 \\
\text { i.e. } S_{18}=1000000 \\
\frac{P(1.0875)\left(1.0875^{18}-1\right)}{0.0875}= \\
\qquad \begin{aligned}
P & =\frac{(10000000)(0.0875)}{1.0875\left(1.0875^{18}-1\right)} \\
& =22818.16829
\end{aligned}
\end{gathered}
$$

An annual instalment of $\$ 22818.17$ will produce $\$ 1000000$

Future Value of Annuity Due

$$
\begin{aligned}
& \quad F V=P R+P R^{2}+P R^{3}+\ldots P R^{n} \\
& \quad=\frac{P R\left(R^{n}-1\right)}{R-1} \\
& P=\text { principal } \\
& R=1+\text { interest rate as a decimal(or fraction) } \\
& n=\text { time periods }
\end{aligned}
$$

d^{*}) If Stephanie could afford it, how much money could she save by making one investment and still have the same future value in 21 years time?

$$
\begin{aligned}
P V(1.0875)^{21} & =299604.86 \\
P V & =\frac{299604.86}{(1.0875)^{21}} \\
& =54467.64
\end{aligned}
$$

A present value of $\$ 54467.64$ would need to be invested
actual investment $=\$ 5000 \times 21$

$$
=\$ 105000
$$

$$
\begin{aligned}
\text { saving } & =105000-54467.64 \\
& =50532.36
\end{aligned}
$$

Stephanie would save $\$ 50532.36$
Present Value of Annuity Due

$$
\left.\begin{array}{l}
(P V) R^{n}=F V \\
=\frac{P R\left(R^{n}-1\right)}{R-1} \\
P V=\frac{P R\left(1-R^{-n}\right)}{R-1}
\end{array}\right\} \begin{array}{r}
P=\text { principal } \\
R=1+\text { interest rate as a decimal(or fraction) } \\
n=\text { time periods }
\end{array}
$$

(ii) A table of future value interest factors is used to compare annuities of \$1

Table of future value interest factors

	Interest rate per period											
Period	$\mathbf{0 . 5 0 \%}$							$\mathbf{1 . 5 0 \%}$	$\mathbf{2 . 0 0 \%}$	$\mathbf{3 . 0 0 \%}$	$\mathbf{4 . 0 0 \%}$	$\mathbf{6 . 0 0 \%}$
$\mathbf{4}$	4.0301	4.0909	4.1216	4.1836	4.2465	4.3746						
$\mathbf{8}$	8.1414	8.4328	8.5830	8.8923	9.2142	9.8975						
$\mathbf{1 6}$	16.6142	17.9324	18.6393	20.1569	21.8245	25.6725						
$\mathbf{3 2}$	34.6086	40.6883	44.2270	52.5028	62.7015	90.8898						
$\mathbf{4 8}$	54.0978	69.5652	79.3535	104.4084	139.2632	256.5645						
$\mathbf{9 6}$	122.8285	211.7202	284.6467	535.8502	1054.2960	4462.6505						

Tim and Janene were offered interest of 6% p.a. for 4 years.
Tim invested $\$ 1500$ each quarter compeunded quarterly and Janene invested $\$ 500$ evepy month compounded monthly. Which person eafned the greater amount of interest?

Tim: 6% p.a $=1.5 \%$ per quarter $F V=17.9324 \times 1500$
$=26898.6$

Janene: 6% p.a $=0.5 \%$ per month

$$
\begin{aligned}
F V & =54.0978 \times 500 \\
& =27048.9
\end{aligned}
$$

$$
\begin{aligned}
\text { Tim's interest } & =26898.60-1500 \times 16 \\
& =2898.60
\end{aligned}
$$

Janene's interest $=27048.90-500 \times 48$

$$
=3048.90
$$

Janene earned $\$ 150.30$ more interest than Tim

Exercise 14C; 5, 9, 12, 13, 17

