Differential Equations Of The Form

 $y^{\prime}=g(y)$Differential equations of the form;

$$
\frac{d y}{d x}=g(y)
$$

are easily separable and written in the form;

$$
\int d x=\int \frac{d y}{g(y)}
$$

Note: they can also be considered as a first order linear DE

$$
\frac{d y}{d x}-g(y)=f(x), \text { where } f(x)=0
$$

$$
\text { e.g. }(i) \frac{d y}{d x}=k(y-N) ; y(0)=N+A
$$

$$
\begin{gathered}
\int_{N+A}^{y} \frac{d y}{y-N}=k \int_{0}^{x} d x \\
{[\ln |y-N|]_{N+A}^{y}=k x} \\
k x=\ln \left|\frac{y-N}{A}\right| \\
e^{k x}=\left|\frac{y-N}{A}\right| \\
y-N=A e^{k x} \\
y=N+A e^{k x}
\end{gathered}
$$

this is our modified growth \& decay equation $\frac{d P}{d t}=k P$

$$
P=N+A e^{k t}
$$

(ii) $\frac{d y}{d x}=e^{2 y-1}$
$\begin{aligned} \int e^{1-2 y} d y & =\int d x \\ -\frac{1}{2} e^{1-2 y} & =x+c\end{aligned}$

$$
e^{1-2 y}=-2 x+c
$$

$$
1-2 y=\ln (-2 x+c)
$$

$$
2 y=1-\ln (c-2 x)
$$

$$
y=\frac{1}{2}[1-\ln (c-2 x)]
$$

(iii) $\frac{d y}{d x}=\sqrt{1-y^{2}}$

$$
\begin{aligned}
\int \frac{d y}{\sqrt{1-y^{2}}} & =\int d x \\
\sin ^{-1} y & =x+c \\
y & =\sin (x+c)
\end{aligned}
$$

The Logistic Equation

The standard logistic equation is the solution of the first order differential equation

$$
\frac{d}{d x}(f(x))=f(x)(1-f(x))
$$

In this course we will restrict the logistic equation to ones of the form

$$
\frac{d y}{d x}=k y(P-y)
$$

e.g. (i) $\frac{d y}{d x}=y(1-y) ; y(0)=a$

If we look at the slope field, we can see that there are three basic curves, depending upon the value of a

as well as two trivial solutions when $a=0$ and $a=1$

$$
\frac{d y}{d x}=y(1-y)
$$

$$
\int_{a}^{y} \frac{d y}{y(1-y)}=\int_{0}^{x} d x
$$

$$
x=\int_{a}^{y}\left(\frac{1}{y}+\frac{1}{1-y}\right) d y
$$

$$
=\left[\ln \left|\frac{y}{1-y}\right|\right]_{a}^{y}
$$

$$
=\ln \left|\frac{y(1-a)}{a(1-y)}\right|
$$

$$
e^{x}=\left|\frac{y(1-a)}{a(1-y)}\right|
$$

$$
A e^{x}=\frac{y}{1-y} \quad\left(|A|=\frac{a}{1-a}\right)
$$

$$
\begin{aligned}
& A e^{x}(1-y)=y \\
& y\left(1+A e^{x}\right)=A e^{x}
\end{aligned}
$$

$$
y=\frac{A e^{x}}{1+A e^{x}}
$$

$$
y=\frac{1}{B e^{-x}+1} \quad\left(B=\frac{1}{A}\right)
$$

$$
\therefore y=0, y=1 \text { or } y=\frac{1}{B e^{-x}+1}
$$

(ii) Find any inflection points in the logistic curve
possible inflection points occur when $\frac{d^{2} y}{d x^{2}}=0$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
& =\frac{d}{d x}\{y(1-y)\} \\
& =\frac{d}{d y}\{y(1-y)\} \times \frac{d y}{d x} \\
& =\{-y+(1-y)\} y(1-y) \\
& =y(1-2 y)(1-y) \\
y & =0, \frac{1}{2} \text { or } 1
\end{aligned}
$$

\therefore the only possible inflection point is when $y=\frac{1}{2}$

$$
\begin{aligned}
B e^{-x} & =1 \\
e^{x} & =B \\
x & =\ln B \\
& =\ln \left|\frac{1-a}{a}\right|
\end{aligned}
$$

> Exercise 13D; 1, 3b, 5c, 6bdf, 8, $9,11,12,14,16,17,18,20,21$
the slope field shows that there is a change in concavity
thus $\left(\ln \left|\frac{1-a}{a}\right|, \frac{1}{2}\right)$ is the point of inflection

