Bernoulli Distribution

A Bernoulli Distribution is the simplest type of discrete probability distribution.

Bernoulli random variables have two possible values; 1 (success) or 0 (failure)

Let X represent a Bernoulli random variable, (Bernoulli trial), with a probability density function

$$
P(X=x)= \begin{cases}p & , x=1 \\ 1-p & , x=0\end{cases}
$$

which can also be expressed as;

$$
P(X=x)=(1-p)^{1-x} p^{x}
$$

\boldsymbol{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{\Sigma}$
$\boldsymbol{p}(\boldsymbol{x})$	$1-p$	p	1
$\boldsymbol{x p}(\boldsymbol{x})$	0	p	p
$\boldsymbol{x}^{2} \boldsymbol{p}(\boldsymbol{x})$	0	p	p

$$
\begin{aligned}
E(X) & =\Sigma x p(x) \\
& =p
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-\mu^{2} \\
& =p-p^{2} \\
& =p(1-p)
\end{aligned}
$$

If $X \sim \operatorname{Bern}(p)$
$E(X)=p$
$\operatorname{Var}(X)=p(1-p)$

Binomial Probability

A binomial experiment is the continual repeating of a Bernoulli trial

1 Event

$$
\begin{aligned}
& P(A)=p \\
& P(B)=q
\end{aligned}
$$

$$
P(A A)=p^{2}
$$

$$
P(\text { AandB })=2 p q
$$

$$
P(B B)=q^{2}
$$

3 Events

$$
\begin{aligned}
& P(A A A)=p^{3} \\
& P(2 \text { Aand })=3 p^{2} q \\
& P(\text { Aand } 2 B)=3 p q^{2} \\
& P(B B B)=q^{3}
\end{aligned}
$$

4 Events
$P(A A A A)=p^{4}$
$P(3$ AandB $)=4 p^{3} q$
$P(2$ Aand $2 B)=6 p^{2} q^{2}$
$P($ Aand $3 B)=4 p q^{3}$
$P(B B B B)=q^{4}$

If X represents a Bernoulli trial, then the probability that X occurs exactly k times in n trials is;

$$
P(X=k)={ }^{n} C_{k} q^{n-k} p^{k}
$$

Note: $q=1-p$
e.g.(i) A bag contains 30 black balls and 20 white balls.

Seven drawings are made (with replacement), what is the probability of drawing; Let X be the number of black balls drawn
a) All black balls?
$P(X=7)={ }^{7} C_{7}\left(\frac{2}{5}\right)^{0}\left(\frac{3}{5}\right)^{7}$
$=\frac{{ }^{7} C_{7} 3^{7}}{5^{7}}$
$=\frac{2187}{78125}$
b) 4 black balls?

$$
\begin{aligned}
P(X=4) & ={ }^{7} C_{4}\left(\frac{2}{5}\right)^{3}\left(\frac{3}{5}\right)^{4} \\
& =\frac{{ }^{7} C_{4} 2^{3} 3^{4}}{5^{7}} \\
& =\frac{4536}{15625}
\end{aligned}
$$

(ii) At an election 30% of voters favoured Party A.

If at random an interviewer selects 5 voters, what is the probability that;
a) 3 favoured Party A?

$$
\begin{aligned}
P(X=3) & ={ }^{5} C_{3}\left(\frac{7}{10}\right)^{2}\left(\frac{3}{10}\right)^{3} \\
& =\frac{{ }^{5} C_{3} 7^{2} 3^{3}}{10^{5}}=\frac{1323}{10000}
\end{aligned}
$$

Let X be the number favouring Party A
b) majority favour A?

$$
\begin{aligned}
P(X \geq 3) & ={ }^{5} C_{3}\left(\frac{7}{10}\right)^{2}\left(\frac{3}{10}\right)^{3}+{ }^{5} C_{4}\left(\frac{7}{10}\right)^{1}\left(\frac{3}{10}\right)^{4}+{ }^{5} C_{5}\left(\frac{7}{10}\right)^{0}\left(\frac{3}{10}\right)^{5} \\
& =\frac{{ }^{5} C_{3} 7^{2} 3^{3}+{ }^{5} C_{4} 7 \cdot 3^{4}+{ }^{5} C_{5} 3^{5}}{10^{5}} \\
& =\frac{4077}{25000}
\end{aligned}
$$

c) at most 2 favoured A ?

$$
\begin{aligned}
P(X \leq 2) & =1-P(X \geq 3) \\
& =1-\frac{4077}{25000} \\
& =\frac{20923}{25000}
\end{aligned}
$$

2005 Extension 1 HSC Q6a)

There are five matches on each weekend of a football season. Megan takes part in a competition in which she earns 1 point if she picks more than half of the winning teams for a weekend, and zero points otherwise.

The probability that Megan correctly picks the team that wins in any given match is $\frac{2}{3}$
(i) Show that the probability that Megan earns one point for a given weekend is $0 \cdot 7901$, correct to four decimal places.

Let X be the number of matches picked correctly

$$
\begin{aligned}
P(X \geq 3) & ={ }^{5} C_{3}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{3}+{ }^{5} C_{4}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{4}+{ }^{5} C_{5}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{5} \\
& =\frac{{ }^{5} C_{3} 2^{3}+{ }^{5} C_{4} 2^{4}+{ }^{5} C_{5} 2^{5}}{3^{5}} \\
& =0.7901
\end{aligned}
$$

(ii) Hence find the probability that Megan earns one point every week of the eighteen week season. Give your answer correct to two decimal places.

Let Y be the number of weeks Megan earns a point

$$
\begin{aligned}
P(Y=18) & ={ }^{18} C_{18}(0.2099)^{0}(0.7901)^{18} \\
& =0.01(\text { to } 2 \mathrm{dp})
\end{aligned}
$$

(iii) Find the probability that Megan earns at most 16 points during the eighteen week season. Give your answer correct to two decimal places.

$$
\begin{aligned}
P(Y \leq 16) & =1-P(Y \geq 17) \\
& =1-{ }^{18} C_{17}(0 \cdot 2099)^{1}(0 \cdot 7901)^{17}-{ }^{18} C_{18}(0 \cdot 2099)^{0}(0 \cdot 7901)^{18} \\
& =0 \cdot 92 \text { (to } 2 \mathrm{dp})
\end{aligned}
$$

2007 Extension 1 HSC Q4a)

In a large city, 10% of the population has green eyes.
(i) What is the probability that two randomly chosen people have green eyes?

$$
\begin{aligned}
P(2 \text { green }) & =0.1 \times 0.1 \\
& =0.01
\end{aligned}
$$

(ii) What is the probability that exactly two of a group of 20 randomly chosen people have green eyes? Give your answer correct to three decimal eyes.

Let X be the number of people with green eyes

$$
\begin{aligned}
P(X=2) & ={ }^{20} C_{2}(0.9)^{18}(0.1)^{2} \\
& =0.2851 \ldots \\
& =0.285 \quad \text { (to } 3 \mathrm{dp} \text {) }
\end{aligned}
$$

(iii) What is the probability that more than two of a group of 20 randomly chosen people have green eyes? Give your answer correct to two decimal places.

$$
\begin{aligned}
P(X>2) & =1-P(X \leq 2) \\
& =1-{ }^{20} C_{2}(0 \cdot 9)^{18}(0 \cdot 1)^{2}-{ }^{20} C_{1}(0 \cdot 9)^{19}(0 \cdot 1)^{1}-{ }^{20} C_{0}(0 \cdot 9)^{20}(0 \cdot 1)^{0} \\
& =0.3230 \ldots \\
& =0.32 \text { (to } 2 \mathrm{dp})
\end{aligned}
$$

Exercise 17A;

$$
2,4,7,8,11,13,15,17,19,20,21,22
$$

