Normal Approximation to the Binomial

- e.g. Estimate the probability that a school of 1200 students contains more than 150 left-handed students
- **Q:** How would you solve such a problem?
- A: One approach would be to take a large sample, say 50 students, and count the number of left handed students. From that information you could estimate the probability.

Say the sample contained 8 left handed students, we would estimate the probability of being left handed as;

$$P(\text{left handed}) = \frac{8}{50} = 0.16$$

Using binomial probability;

Let X = number of left handed students $X \sim Bin(1200, 0.16)$ $P(X > 150) = 1 - P(X \le 150)$ $= 1 - {\binom{1200}{0}}(0.84)^{1200}(0.16)^0 - {\binom{1200}{1}}(0.84)^{1199}(0.16)^1 - ...$ $\dots - {\binom{1200}{149}}(0.84)^{1051}(0.16)^{149} - {\binom{1200}{150}}(0.84)^{1050}(0.16)^{150}$

even using the idea of complimentary events, it still involves 151 calculations

= 1 - 0.0003838

= 0.9996 (to 4 dp)

The distribution's polygon would look like

- The distribution has a modal class somewhere in the middle of the range of values
- The distribution is symmetrical
- The frequency density tails off fairly rapidly as values move further away from the modal class

These are the features of a normal distribution

So what would have happened if we assumed our distribution was normal;

first we need to find the mean and variation

$$X \sim \text{Bin}(1200, 0.16) \qquad \mu = np \qquad \sigma^2 = np(1-p) \\ = (1200)(0.16) \qquad = (1200)(0.16)(0.84) \\ = 192 \qquad = 161.28$$

$$X \sim N(192, 161.28) \Leftrightarrow Z \sim N(0, 1)$$
 where $Z = \frac{X - \mu}{\sigma}$

we need to standardise the data

$$P(X > 150) = 1 - P(X \le 150)$$

= $1 - P\left(Z \le \frac{150 - 192}{\sqrt{161.28}}\right)$
= $1 - \Phi(-3.31)$
= $1 - 0.0046654$
= 0.9995 (to 4 dp)
$$\frac{0.999616326 - 0.99953346}{0.999616326} \times \frac{100}{1}$$

When is it okay to approximate a binomial distribution with a normal distribution?

Keep in mind the three key features of a normal distribution

- The distribution has a modal class somewhere in the middle of the range of values
- The distribution is symmetrical
- The frequency density tails off fairly rapidly as values move further away from the modal class

Let's take a look at some binomial distributions;

n	р	q	np	nq	🗹 or 🗵
10	0.25	0.75	2.5	7.5	×
20	0.25	0.75	5.0	15.0	
30	0.25	0.75	7.5	22.5	
40	0.25	0.75	10.0	30.0	
50	0.25	0.75	12.5	37.5	

n	p	q	np	nq	🗹 or 🗵
10	0.375	0.625	3.75	6.25	×
20	0.375	0.625	7.50	12.50	
30	0.375	0.625	11.25	18.75	
40	0.375	0.625	15.00	25.00	
50	0.375	0.625	18.75	31.25	

We are approximating the area under the polygon with bins 1 unit apart, so for the interval $a \le x \le b$, the area under the polygon is actually $\int_{a-0.5}^{b+0.5} f(x) dx$

(this might be more obvious if you think of the histogram)

continuity correction for small samples

for small *n*; $P(a \le X \le b)$ use $P(a - 0.5 \le X \le b + 0.5)$

Exercise 17C; 1, 2adg, 3, 4, 5, 7, 9, 11, 12