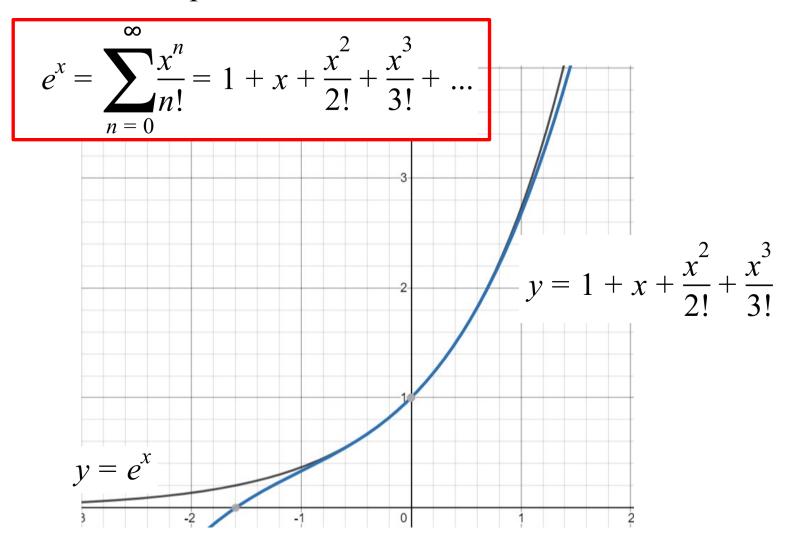
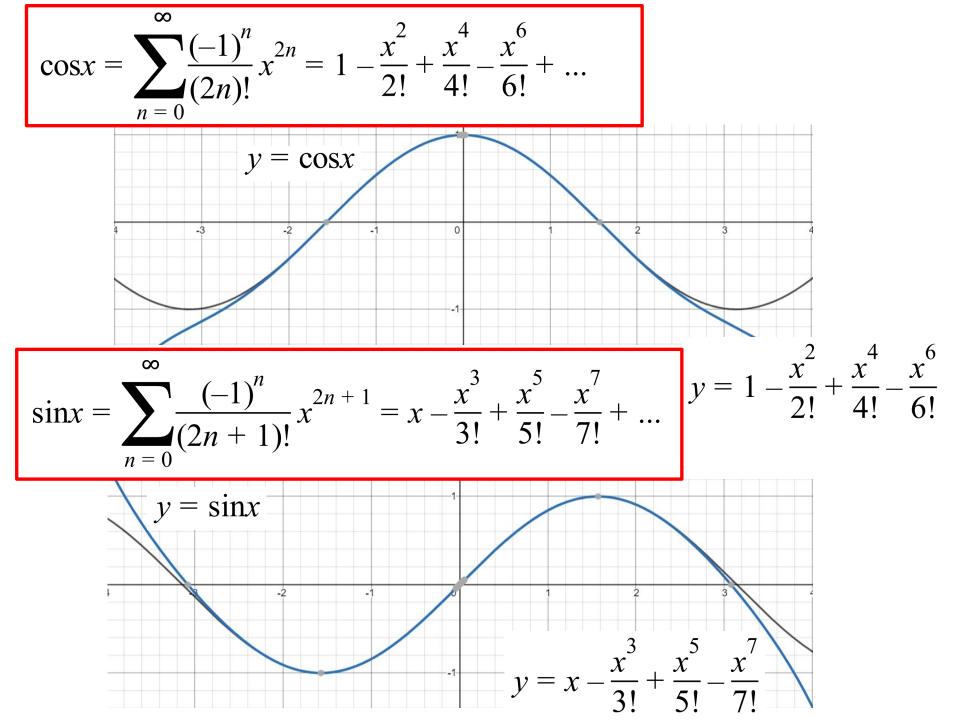
Euler's Formula **Maclaurin Series**

A Maclaurin series is a representation of a function as an infinite sum





Euler's Formula

Euler's formula uses imaginary numbers to convert between exponential and trigonometric functions

Let $x = \theta$ in the Maclaurin series expressions for $\cos x$ and $\sin x$

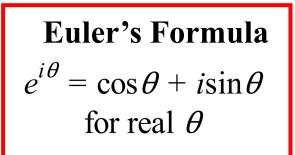
$$\cos\theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots \qquad \sin\theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \dots$$

Let $x = i\theta$ in the expression for e^x

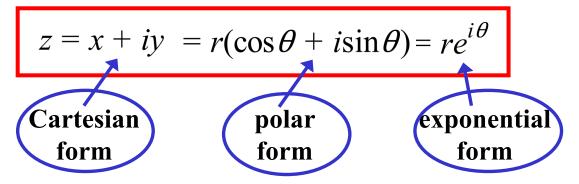
$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \dots$$

= $1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} + \dots$
= $\left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots\right)$

 $=\cos\theta + i\sin\theta$



This now gives a third way for expressing complex numbers



e.g. Write 4 - 4i in exponential form

$$4 - 4i = 4\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)$$
$$= 4\sqrt{2} e^{-\frac{i\pi}{4}}$$

Using Euler's Formula for multiplication and division

e.g. if
$$z = \sqrt{3} + i$$
 and $w = 1 - \sqrt{3}$ i, find;
(i) $zw = (\sqrt{3} + i)(1 - \sqrt{3}i)$
 $= 2e^{\frac{i\pi}{6}} \times 2e^{-\frac{i\pi}{3}}$
 $= 4e^{-\frac{i\pi}{6}}$
 $= 4e^{-\frac{i\pi}{6}}$
 $= 4\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$
 $= 2\sqrt{3} - 2i$

(*iii*) $z^5 = 2^5 e^{\frac{5i\pi}{6}}$ = $32\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$ = $-16 - 16\sqrt{3}i$

Exercise 3D;1ac, 2cd, 3abf, 4ade, 5, 6bd, 7, 8, 11ad, 12ab (i, ii, iv), 14bd