Applications of Euler's

 Formula
Exponential Functions

$$
\begin{aligned}
e^{i \theta+2 i k \pi} & =\cos (\theta+2 \pi k)+i \sin (\theta+2 \pi k) \\
& =\cos \theta+i \sin \theta \text { if } k \in \mathbb{Z} \\
& =e^{i \theta}
\end{aligned}
$$

$$
e^{i(\theta+2 \pi k)}=e^{i \theta}
$$

So e^{z} is a periodic function, with period $2 \pi i$

Trigonometric Functions

Earlier we proved the following identities:

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \text { and } z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta
$$

rearranging these we get;

$$
\begin{aligned}
& 2 \cos n \theta=e^{n \theta i}+e^{-n \theta i} \quad 2 i \sin n \theta=e^{n \theta i}-e^{-n \theta i} \\
& \cos n \theta=\frac{1}{2}\left(e^{n \theta i}+e^{-n \theta i}\right) \quad \sin n \theta=\frac{1}{2 i}\left(e^{n \theta i}-e^{-n \theta i}\right)
\end{aligned}
$$

e.g. Prove the identities;
(i) $\sin ^{2} \theta+\cos ^{2} \theta=1$

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =\frac{1}{(2 i)^{2}}\left(e^{i \theta}-e^{-i \theta}\right)^{2}+\frac{1}{2^{2}}\left(e^{i \theta}+e^{-i \theta}\right)^{2} \\
& =\frac{1}{4}\left(-e^{2 i \theta}+2-e^{-2 i \theta}+e^{2 i \theta}+2+e^{-2 i \theta}\right) \\
& =\frac{1}{4}(4)=1
\end{aligned}
$$

(ii) $\sin ^{3} \theta=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta$

$$
\begin{aligned}
\sin ^{3} \theta & =\left(\frac{e^{i \theta}-e^{-i \theta}}{2 i}\right)^{3} \\
& =\frac{e^{3 i \theta}-3 e^{i \theta}+3 e^{-i \theta}-e^{-3 i \theta}}{-8 i} \\
& =\frac{1}{4}\left(\frac{3\left(e^{i \theta}-e^{-i \theta}\right)-\left(e^{3 i \theta}-e^{-3 i \theta}\right)}{2 i}\right) \\
& =\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta
\end{aligned}
$$

(iii) $2 \sin \alpha \cos \beta=\sin (\alpha+\beta)+\sin (\alpha-\beta)$
$2 \sin \alpha \cos \beta=2 \times \frac{e^{i \alpha}-e^{-i \alpha}}{2 i} \times \frac{e^{i \beta}+e^{-i \beta}}{2}$

$$
=\frac{e^{i(\alpha+\beta)}+e^{i(\alpha-\beta)}-e^{-i(\alpha-\beta)}-e^{-i(\alpha+\beta)}}{2 i}
$$

$$
=\frac{e^{i(\alpha+\beta)}-e^{-i(\alpha+\beta)}}{2 i}+\frac{e^{i(\alpha-\beta)}-e^{i(\alpha-\beta)}}{2 i}
$$

$$
=\sin (\alpha+\beta)+\sin (\alpha-\beta)
$$

Roots of Complex Numbers

e.g. Find the square roots of $1-\sqrt{3} i$

$$
\begin{aligned}
z^{2} & =1-\sqrt{3} i \\
& =2 e^{-\frac{i \pi}{3}}
\end{aligned}
$$

$$
z=\sqrt{2} e^{-\frac{i \pi}{6}+\pi k}, k=0,1
$$

$$
z=\sqrt{2} e^{-\frac{i \pi}{6}}, \sqrt{2} e^{\frac{5 i \pi}{6}}
$$

Exercise 3E; 1, 3, 4bc, 6, 7, 8b ii, iii,

$$
z=\sqrt{2}\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right), \sqrt{2}\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)
$$

$$
=\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2} i,-\frac{\sqrt{6}}{2}+\frac{1}{2} i
$$

