Deductive Reasoning

An argument is valid iff it takes a form that makes it impossible for the premises to be true and the conclusion nevertheless false.
(1) Direct Proof (modus ponens)

$$
(P \wedge(P \Rightarrow Q)) \Rightarrow Q
$$

P	Q	$(P \wedge(P \Rightarrow Q)) \Rightarrow Q$							
T	T	T	T	T	T	T	T	T	
T	F	T	F	T	F	F	T	F	
F	T	F	F	F	T	T	T	T	
F	F	F	F	F	T	F	T	F	

$$
((P \Rightarrow Q) \wedge(Q \Rightarrow R)) \Rightarrow(P \Rightarrow R)
$$

e.g. (i) Prove that if a number is odd, then its square is also odd

Let n be an odd integer

$$
\begin{aligned}
n & =2 k+1 \quad, \quad k \in \mathbb{Z} \\
n^{2} & =(2 k+1)^{2} \\
& =4 k^{2}+4 k+1 \\
& =2\left(2 k^{2}+2 k\right)+1 \\
& =2 P+1 \quad \text { where } P=\left(2 k^{2}+2 k\right) \in \mathbb{Z}
\end{aligned}
$$

hence if n is odd, n^{2} is also odd
(ii) Prove that the sum of the squares of five consecutive integers is divisible by 5

If $p, q \in \mathbb{Z}$ and q is divisible by p then $\exists n \in \mathbb{Z}: q=p n$

$$
\begin{aligned}
\text { Let } q & =(n-2)^{2}+(n-1)^{2}+n^{2}+(n+1)^{2}+(n+2)^{2} \quad, n \in \mathbb{Z} \\
& =5 n^{2}+4+1+1+4 \\
& =5 n^{2}+10 \\
& =5\left(n^{2}+2\right) \\
& =5 P \text { where } P=\left(n^{2}+2\right) \in \mathbb{Z}
\end{aligned}
$$

hence the sum of the squares of five consecutive integers is divisible by 5

(2) Proof by Contraposition (modus tollens)

$$
(\neg Q \Rightarrow \neg P) \Leftrightarrow(P \Rightarrow Q)
$$

e.g. Prove that if $2^{n}-1, n \in \mathbb{N}$, is prime then n is prime

Let $n=p q, p, q \in \mathbb{N}$ and $p, q \neq 1 \quad$ (i.e. n is not prime)

$$
2^{n}-1=2^{p q}-1
$$

$$
=\left(2^{p}\right)^{q}-1
$$

$$
=\left(2^{p}-1\right)\left(1+2^{p}+2^{2 p}+\ldots+2^{(q-1) p}\right)
$$

$$
=P Q, \text { where } P=\left(2^{p}-1\right) \neq 1
$$

$$
\text { and } Q=\left(1+2^{p}+2^{2 p}+\ldots+2^{(q-1) p}\right) \neq 1 \forall P, Q \in \mathbb{N}
$$

\therefore if n is not prime, then $2^{n}-1$ is not prime
hence if $2^{n}-1$ is prime then n is prime, by contraposition

(3) Proof by Contradiction (reductio ad impossible - indirect proof)

$$
(\neg(P \Rightarrow Q) \Rightarrow(R \wedge \neg R)) \Rightarrow(P \Rightarrow Q)
$$

P	Q	$(\neg(P \Rightarrow Q) \Rightarrow(R \wedge \neg R)) \Rightarrow(P \Rightarrow Q)$						
\mathbf{T}	\mathbf{T}	\mathbf{F}	T	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	T	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}

e.g. (i) Prove $\log _{2} 5$ is irrational

Assume $\log _{2} 5$ is rational
i.e. $\log _{2} 5=\frac{p}{q}$, where p and q are coprime

$$
\begin{aligned}
2^{\underline{p}} & =5 \\
2^{p} & =5^{q}
\end{aligned}
$$

so LHS is even and RHS is odd, which is a contradiction
$\therefore \log _{2} 5$ is irrational
(ii) Prove that there are no integers a and b such that $18 a+6 b=1$

$$
\text { Assume } \exists a, b \in \mathbb{Z}: 18 a+6 b=1
$$

$$
\begin{aligned}
18 a+6 b & =1 \\
6(3 a+b) & =1 \\
3 a+b & =\frac{1}{6} \\
\text { however } 3 a & +b \in \mathbb{Z}
\end{aligned}
$$

$$
3 a+b \neq \frac{1}{6}, \text { which is a contradiction }
$$

Thus there are no integers a and b such that $18 a+6 b=1$

e.g. 2020 Extension 2 HSC Question 15

In the set of integers, let P be the proposition:
"If $k+1$ is divisible by 3 , then $k^{3}+1$ is divisible by 3 "
(i) Prove that the proposition is true

$$
\text { Let } \begin{aligned}
k+1 & =3 P, \text { where } P \in \mathbb{Z} \forall k \in \mathbb{Z} \\
k^{3}+1 & =(k+1)\left(k^{2}-k+1\right) \\
& =3 P\left(k^{2}-k+1\right) \\
& =3 Q \quad \text { where } Q=P\left(k^{2}-k+1\right) \in \mathbb{Z}
\end{aligned}
$$

Thus if $k+1$ is divisible by 3 , then $k^{3}+1$ is divisible by 3
(ii) Write down the contrapositive of the proposition P

If $k^{3}+1$ is not divisible by 3 then $k+1$ is not divisible by 3 ,
(iii) Write down the converse of the proposition P and state, with reasons, whether this converse is true or false

If $k^{3}+1$ is divisible by 3 then $k+1$ is divisible by 3

$$
(P \Rightarrow Q) \Leftrightarrow(\neg Q \Rightarrow \neg P)
$$

$P: k^{3}+1$ is divisible by $3 \quad Q: k+1$ is divisible by 3

$$
\begin{aligned}
k^{3}+1 & =(k+1)\left(k^{2}-k+1\right) \\
& =(k+1)\left(k^{2}+2 k+1-3 k\right) \\
& =(k+1)\left[(k+1)^{2}-3 k\right]
\end{aligned}
$$

Exercise 2B;
1b, 2c, 3a, 4a, 7, 10, 12, 16,

17b
Exercise 2C;
1, 3, 4, 5,
7, 9, 11, 13

If $k+1$ is not divisible by 3 then neither is $(k+1)^{2}$
Thus $\left[(k+1)^{2}-3 k\right]$ is not divisible by 3 , which means
$(k+1)\left[(k+1)^{2}-3 k\right]$ is not divisible by 3
i.e. If $k+1$ is not divisible by 3 then $k^{3}+1$ is not divisible by 3
\therefore If $k^{3}+1$ is divisible by 3 then $k+1$ is divisible by 3 by contraposition

