Trig Integrals I

(1) Basic Integrals

$$
\begin{aligned}
& \int \sin x d x=-\cos x+c \\
& \int \cos x d x=\sin x+c \\
& \int \sec ^{2} x d x=\tan x+c \\
& \int \tan x d x=\int \frac{\sin x}{\cos x} d x \\
& \quad=-\log |\cos x|+c \quad \text { OR } \quad \log |\sec x|+c
\end{aligned} \begin{aligned}
\int \sec x \tan x d x & =\sec x+c
\end{aligned}
$$

(2) Complementary Ratios

\int complementary trig ratio $=-$ complement of the answer

$$
\begin{aligned}
& \int \cos x d x=\sin x+c \\
& \int \operatorname{cosec}^{2} x d x=-\cot x+c \\
& \int \cot x d x=\log |\sin x|+c \\
& \int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+c
\end{aligned}
$$

(3) Squares of Trig Functions

$$
\left.\begin{array}{ll}
\begin{array}{ll}
\sin ^{2} x d x=\frac{1}{2} \int(1-\cos 2 x) d x & =\frac{x}{2}-\frac{1}{4} \sin 2 x+c \\
(& \left.=\frac{x}{2}-\frac{1}{2} \sin x \cos x+c\right)
\end{array} \\
\int \cos ^{2} x d x=\frac{1}{2} \int(1+\cos 2 x) d x & =\frac{x}{2}+\frac{1}{4} \sin 2 x+c \\
(& \left.=\frac{x}{2}+\frac{1}{2} \cos x \sin x+c\right)
\end{array}\right\} \begin{array}{ll}
\int \sec ^{2} x d x=\tan x+c \quad & \operatorname{cosec}^{2} x d x=-\cot x+c \\
\int \tan ^{2} x d x=\int\left(\sec ^{2} x-1\right) d x & =\tan x-x+c \\
\int \cot ^{2} x d x=\int\left(\operatorname{cosec}^{2} x-1\right) d x & =-\cot x-x+c
\end{array}
$$

e.g. (i) $\int \cos ^{2} 3 x d x=\frac{1}{2} \int(1+\cos 6 x) d x$

$$
=\frac{x}{2}+\frac{1}{12} \sin 6 x+c
$$

(ii) $\int \sin x \cos 2 x d x$
(iii) $\int_{0}^{\frac{\pi}{4}} \sin x \cos ^{3} x d x$
$=\frac{1}{2} \int(\sin 3 x+\sin (-x)) d x$
$=\frac{1}{2} \int(\sin 3 x-\sin x) d x$
$=-\frac{\cos 3 x}{6}+\frac{\cos x}{2}+c$

Exercise 12C; 4c, 5ace, 6, 8bdfh, 9, 10ab i, 11ad, 12, 13, 14
$=-\int_{0}^{\frac{\pi}{4}}-\sin x \cos ^{3} x d x$
$=\left[\frac{\cos ^{4} x}{4}\right]_{\frac{\pi}{4}}^{0}$
$=\frac{1}{4}\left(1-\frac{1}{4}\right)$
$=\frac{3}{16}$

