Inequations

An inequation is a problem where we are trying to find possible values, solved the same as an equation, ending up with a pronumeral as the subject of the inequation.

The inequality sign will only change when:

1) Multiply or divide by a negative number
"if you change the sign, you change the sign"
2) The reciprocal of both sides are taken
e.g. (i) $6 x<36$

(ii) $2 \leq 6-4 x \leq 14$
$-4 \leq-4 x \leq 8$
$1 \geq x \geq-2$
$-2 \leq x \leq 1$

The "correct" way of writing inequalities

the algebraic solution should match (look like) the geometrical solution

NOT $x>4$ or $x \leq 6$

$$
x \leq 4 \quad \text { or } x \geq 6
$$

NOT $x \geq 6$ or $x \leq 4$
NOT $4 \geq x \geq 6$

Quadratic Inequations

e.g. (i) $x^{2}+5 x-6<0$

$$
\begin{gathered}
(x+6)(x-1)<0 \\
-6<x<1
\end{gathered}
$$

The answer is the domain of the function, when the range is restricted to $y<0$
(ii) $-x^{2}-3 x+4 \leq 0$

$$
x^{2}+3 x-4 \geq 0
$$

$$
(x+4)(x-1) \geq 0
$$

$$
x \leq-4 \text { or } x \geq 1
$$

Note: quadratic inequalities
always have solutions in the form
$?<x<$? OR $x<$? or $x>$?

Q: for what values of x is the parabola above the x axis?
To solve an inequation;

1. Solve the equation
2. Test the regions

Absolute Value Inequations

e.g. (i) $|x+5|<2$

$$
\begin{array}{clrl}
x+5 & <2 \text { or } & -(x+5)<2 \\
x<-3 & & -x-5<2
\end{array}
$$

$$
-x<7
$$

$$
\therefore-7<x<-3
$$

(ii) $|3 x+2| \geq 1$

$$
3 x+2 \geq 1 \quad \text { or } \quad-(3 x+2) \geq 1
$$

$$
3 x \geq-1 \quad-3 x-2 \geq 1
$$

$$
\left.\begin{array}{rl}
x \geq-\frac{1}{3} & -3 x
\end{array}\right) 3 \text { } \begin{aligned}
& x
\end{aligned}
$$

$\therefore x \leq-1$ or $x \geq-\frac{1}{3}$
alternate method: turn it into a quadratic inequation

$$
\begin{aligned}
& \text { e.g. (i) }|x+5|<2 \\
&(x+5)^{2}<4 \\
& x^{2}+10 x+25<4 \\
& x^{2}+10 x+21<0 \\
&(x+7)(x+3)<0 \\
& \therefore-7<x<-3 \\
& \hline
\end{aligned}
$$

1) square both sides
(squares are always positive, just like absolute value)
2) Solve the quadratic inequation
(ii) $|3 x+2| \geq 1$
$(3 x+2)^{2} \geq 1$

$$
9 x^{2}+12 x+4 \geq 1
$$

$$
9 x^{2}+12 x+3 \geq 0
$$

$$
3 x^{2}+4 x+1 \geq 0
$$

$$
(3 x+1)(x+1) \geq 0
$$

$$
\therefore x \leq-1 \text { or } x \geq-\frac{1}{3}
$$

Inequations with Pronumerals in the Denominator

$$
\begin{aligned}
& \frac{1}{x}=3 \\
& x=\frac{1}{3}
\end{aligned}
$$

3) Plot these values on a number line

4) Test regions

Test $x=-1 \frac{1}{-1} \geq 3 X \quad$ Test $x=\frac{1}{4} \frac{1}{1} \geq 3 \sqrt{4} \quad$ Test $x=1 \quad \frac{1}{1} \geq 3 X$

$$
\therefore 0<x \leq \frac{1}{3}
$$

$$
\text { (ii) } \begin{array}{rlrl}
\frac{2}{x+3} & <5 & \frac{2}{x+3} & =5 \\
x+3 & \neq 0 & 2 & =5 x+15 \\
x \neq-3 & 5 x & =-13 \\
& x & =-\frac{13}{5}
\end{array}
$$

$$
\longleftarrow \stackrel{Q}{-3} \stackrel{\Omega}{-\frac{13}{5}}
$$

$$
\begin{aligned}
5 x & =-13 \\
x & =-\frac{13}{5} \quad \therefore x<-3 \text { or } x>-\frac{13}{5}
\end{aligned}
$$

alternate method: turn it into a quadratic inequation

$$
\begin{aligned}
& \text { e.g. (i) } \frac{1}{x} \geq 3 \\
& \frac{1}{x} \times x^{2} \geq 3 x^{2} \\
& \left.x \geq 3 x^{2} \quad 3\right) \text { Take care of the domain issue } \\
& 3 x^{2}-x \leq 0 \quad \text { (bottom of fraction cannot equal zero) } \\
& x(3 x-1) \leq 0 \\
& 0 \leq x \leq \frac{1}{3}, x \neq 0 \\
& \text { (ii) } \frac{2}{x+3}<5 \\
& \therefore 0<x \leq \frac{1}{3} \\
& \text { 1) multiply both sides by the denominator squared } \\
& \text { (to ensure it is a positive number, so the sign stays the same) } \\
& \text { 2) Solve the quadratic inequation } \\
& \text { (bottom of fraction cannot equal zero) } \\
& 2(x+3)<5(x+3)^{2} \\
& 5(x+3)^{2}-2(x+3)>0 \\
& (x+3)(5 x+13)>0 \\
& \therefore x<-3 \text { or } x>-\frac{13}{5} \quad, x \neq-3 \\
& \therefore x<-3 \text { or } x>-\frac{13}{5}
\end{aligned}
$$

