Cartesian Geometry
 \section*{Distance Formula}
 Midpoint Formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

e.g. Find the midpoint of
$(3,4)$ and $(-2,1)$

$$
\begin{aligned}
M & =\left(\frac{3-2}{2}, \frac{4+1}{2}\right) \\
& =\left(\frac{1}{2}, \frac{5}{2}\right)
\end{aligned}
$$

The midpoint formula averages the x and y values
finding the length of the hypotenuse, using Pythagoras

Using Euclidean Geometry with Cartesian Geometry

The ideas (theorems) from Euclidean Geometry are often used to solve problems in Cartesian Geometry.

Classifying Quadrilaterals

Quadrilaterals can be classified according to the features they possess. As you branch down the quadrilateral family, the quadrilaterals become more specialised in their features.
Any property that you know about the quadrilaterals a particular shape has branched from can be used for that quadrilateral as well as the specific properties for that shape.
e.g. a rhombus has the properties of a rhombus, parallelogram, trapezium, kite and quadrilateral.

e.g. The points $A(-1,-4), B(3,-1), C(6,3)$ and $D(2,0)$ form a quadrilateral as shown.
 Show that $A B C D$ is a rhombus

$$
\begin{aligned}
M_{A C} & =\left(\frac{6-1}{2}, \frac{3-4}{2}\right) \\
& =\left(\frac{5}{2},-\frac{1}{2}\right) \\
M_{B D} & =\left(\frac{2+3}{2}, \frac{0-1}{2}\right) \\
& =\left(\frac{5}{2},-\frac{1}{2}\right)=M_{A C}
\end{aligned}
$$

$\therefore A B C D$ is a parallelogram
(diagonals bisect)

$$
\begin{aligned}
d_{C D} & =\sqrt{(6-2)^{2}+(3-0)^{2}} \\
& =\sqrt{4^{2}+3^{2}} \\
& =5
\end{aligned}
$$

$$
d_{A D}=\sqrt{(-1-2)^{2}+(-4-0)^{2}}
$$

$$
=\sqrt{3^{2}+4^{2}}
$$

$$
=5=d_{C D}
$$

$\therefore A B C D$ is a rhombus (parallelogram with adjacent sides $=$)

Exercise 7A; 1ad, 2be, 4, 5, 7bc, 8, 9, 10, 12b, 14d, 15, 16ac, 17, 18

