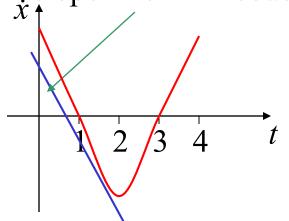
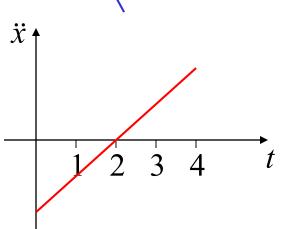
Applications of Calculus To The Physical World

Displacement (x)

Distance from a point, with direction.

Velocity
$$\left(v, \frac{dx}{dt}, \dot{x}\right)$$


The rate of change of displacement with respect to time i.e. speed with direction.


Acceleration
$$\left(a, \frac{dv}{dt}, \frac{d^2x}{dt^2}, \ddot{x}, \dot{v}\right)$$

The rate of change of velocity with respect to time

NOTE: "deceleration" or slowing down is when acceleration is in the opposite direction to velocity.

slope=instantaneous acceleration $\dot{x} \uparrow$

e.g. (i) distance traveled
$$= 7 \text{ m}$$

(ii) total displacement =
$$-1$$
m

(*iii*) average speed
$$=\frac{7}{4}$$
 m/s

(iv) average velocity
$$=\frac{-1}{4}$$
 m/s

- e.g. (i) The displacement x from the origin at time t seconds, of a particle traveling in a straight line is given by the formula $x = t^3 21t^2$
- a) Find the acceleration of the particle at time t.

$$x = t^3 - 21t^2$$

$$v = 3t^2 - 42t$$

$$a = 6t - 42$$

b) Find the times when the particle is stationary.

Particle is stationary when v = 0

i.e.
$$3t^2 - 42t = 0$$

 $3t(t-14) = 0$
 $t = 0$ or $t = 14$

Particle is stationary initially and again after 14 seconds

(ii) A particle is moving on the x axis. It started from rest at t = 0 from the point x = 7.

If its acceleration at time t is 2 + 6t find the position of the particle when t = 3.

$$a = 2 + 6t$$

$$v = 2t + 3t^{2} + c$$
when $t = 0, v = 0$
i.e. $0 = 0 + 0 + c$

$$c = 0$$

$$v = 2t + 3t^{2}$$

$$x = t^{2} + t^{3} + c$$
when $t = 0, x = 7$

i.e. 7 = 0 + 0 + c

 $x = t^2 + t^3 + 7$

c = 7

after 3 seconds the particle is 43
units to the right of O.

OR
$$\frac{dv}{dt} = 2 + 6t \qquad \frac{dx}{dt} = 2t + 3t^2$$

$$\int_{0}^{v} dv = \int_{0}^{t} (2 + 6t) dt \qquad \int_{7}^{x} dx = \int_{0}^{3} (2t + 3t^2) dt$$

$$v = \left[2t + 3t^2\right]_{0}^{t} \qquad \left[x\right]_{7}^{x} = \left[t^2 + t^3\right]_{0}^{3}$$

$$v = 2t + 3t^2 \qquad x - 7 = 3^2 + 3^3 - 0$$

$$x = 43$$

when t = 3, $x = 3^2 + 3^3 + 7$

=43

e.g. 2001 HSC Question 7c)

A particle moves in a straight line so that its displacement, in metres, is given by $x = \frac{t-2}{2}$

$$x = \frac{t - 2}{t + 2}$$

where *t* is measured in seconds.

(i) What is the displacement when t = 0?

when
$$t = 0, x = \frac{0-2}{0+2}$$

= -1

: the particle is 1 metre to the left of the origin

(ii) Show that
$$x = 1 - \frac{4}{t+2}$$

Hence find expressions for the velocity and the acceleration in terms of t.

$$1 - \frac{4}{t+2} = \frac{t+2-4}{t+2}$$

$$- t-2$$

$$= \frac{t+2-4}{t+2} \qquad v = -\frac{4(-1)}{(t+2)^2} \qquad a = \frac{4 \times -2(t+2)^1(1)}{(t+2)^4}$$

$$= \frac{t-2}{t+2} \qquad \therefore x = 1 - \frac{4}{t+2} \qquad v = \frac{4}{(t+2)^2} \qquad a = \frac{-8}{(t+2)^3}$$

(iii) Is the particle ever at rest? Give reasons for your answer.

$$v = \frac{4}{\left(t+2\right)^2} \neq 0$$

: the particle is never at rest

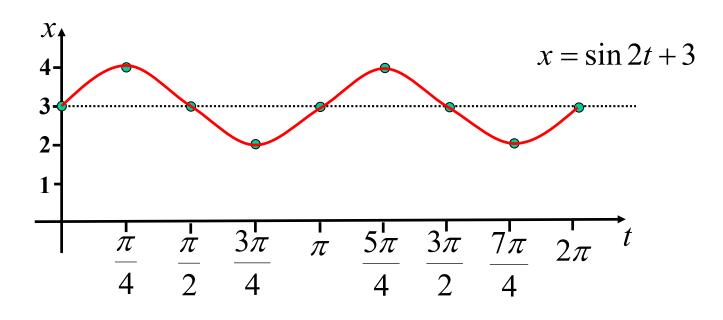
(iv) What is the limiting velocity of the particle as *t* increases indefinitely?

$$\lim_{t \to \infty} v = \lim_{t \to \infty} \frac{4}{(t+2)^2}$$

$$= 0$$

$$v = \frac{4}{(t+2)^2}$$

$$t$$


: the limiting velocity of the particle is 0 m/s

(ii) 2002 HSC Question 8b)

A particle moves in a straight line. At time t seconds, its distance x metres from a fixed point O in the line is given by $x = \sin 2t + 3$

(i) Sketch the graph of x as a function of t for $0 \le t \le 2\pi$

amplitude = 1 unit period =
$$\frac{2\pi}{2}$$
 divisions = $\frac{\pi}{4}$
shift = \uparrow 3 units = π

(ii) Using your graph, or otherwise, find the times when the particle is at rest, and the position of the particle at those times.

Particle is at rest when velocity = 0

$$\frac{dx}{dt} = 0$$
 i.e. the stationary points

when
$$t = \frac{\pi}{4}$$
 seconds, $x = 4$ metres

$$t = \frac{3\pi}{4}$$
 seconds, $x = 2$ metres

$$t = \frac{5\pi}{4}$$
 seconds, $x = 4$ metres

$$t = \frac{7\pi}{4}$$
 seconds, $x = 2$ metres

(iii) Describe the motion completely.

The particle oscillates between x=2 and x=4 with a period of

 π seconds

Exercise 9B; 3, 5, 7, 8, 10, 11, 13, 15