Applications of the Dot

 Product
Angle Between Two Vectors

$$
\cos \theta=\frac{\underset{\sim}{u} \cdot v}{|\underset{\sim}{u}||\underset{\sim}{v}|}
$$

e.g. Find the angle between the vectors

$$
\begin{aligned}
\cos \theta & =\frac{-4+4+3}{\sqrt{1^{2}+2^{2}+3^{2}} \sqrt{(-4)^{2}+2^{2}+1^{2}}} \\
& =\frac{3}{\sqrt{14} \sqrt{21}} \\
& =\frac{3}{7 \sqrt{6}}
\end{aligned}
$$

\therefore the angle between the two vectors is 80° to the nearest degree

Vector Projections

$$
\operatorname{proj}_{\sim}^{v} \underset{\sim}{u}=\left(\begin{array}{c}
\underset{\sim}{u \cdot v} \\
\underset{\sim}{v} \cdot v \\
\sim
\end{array}\right) \underset{\sim}{v}
$$

(ii) Find the length of the projection of $\underset{\sim}{u}=4 \underset{\sim}{i}+5 j-3 \underset{\sim}{k}$ onto

$$
\underset{\sim}{v}=2 \underset{\sim}{i}-2 j+\underset{\sim}{k} \quad \begin{aligned}
{\underset{\sim}{u}}_{|\underset{\sim}{v}|}^{v} & =\frac{8-10-3}{\sqrt{2^{2}+2^{2}+1^{2}}} \\
& =-\frac{5}{3}
\end{aligned}
$$

(iii) Find the projection of $\underset{\sim}{u}=2 \underset{\sim}{i}+3 \underset{\sim}{j}-4 \underset{\sim}{k}$ onto $\underset{\sim}{v}=\underset{\sim}{i}+j+2 \underset{\sim}{k}$

$$
\begin{aligned}
\operatorname{proj}_{\underset{\sim}{*}} \underset{\sim}{u}=(\underset{\sim}{\underset{\sim}{v} \cdot \underset{\sim}{v}}) \underset{\sim}{v} & =\frac{2+3-8}{1^{2}+1^{2}+2^{2}}(\underset{\sim}{i}+\underset{\sim}{j}+2 \underset{\sim}{k}) \\
& =\frac{3}{4}(\underset{\sim}{i}+\underset{\sim}{j}+2 \underset{\sim}{k}) \\
& =\frac{3}{4} i+\frac{3}{\sim} j+\frac{3}{2} \underset{\sim}{k}
\end{aligned}
$$

Perpendicular Distance

(iv) Find the perpendicular distance from $A(1,0,2)$ to the line joining $B(2,2,1)$ and $C(3,1,1)$

$$
\text { Let } \underset{\sim}{p}=\overrightarrow{\mathrm{BA}}=-\underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{k} \quad \underset{\sim}{u}=\overrightarrow{\mathrm{BC}}=\underset{\sim}{i}-j
$$

$$
\text { distance }=\left|\operatorname{proj}_{\sim}^{u} p-\underset{\sim}{p}\right|
$$

$$
\begin{aligned}
& =\left|\frac{1}{2}(\underset{\sim}{i}-\underset{\sim}{j})-(-\underset{\sim}{i}-\underset{\sim}{2 j}+\underset{\sim}{k})\right| \\
& =\left|\frac{3}{2} \underset{\sim}{i}+\frac{3}{2} j \underset{\sim}{\sim}-\underset{\sim}{k}\right|=\frac{\sqrt{22}}{2} \text { units }
\end{aligned}
$$

(v) Classify the triangle formed by joining the points $A(-1,3,3), B(2,5,4)$ and $C(0,3,2)$
$\overrightarrow{A B}=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right) \quad \begin{aligned}|\overrightarrow{\mathrm{AB}}| & =\sqrt{3^{2}+2^{2}+1^{2}} \\ & =\sqrt{14}\end{aligned}$

$$
\begin{aligned}
\overrightarrow{B C}=\left(\begin{array}{l}
-2 \\
-2 \\
-2
\end{array}\right) \quad|\overrightarrow{B C}| & =\sqrt{2^{2}+2^{2}+2^{2}} \\
& =\sqrt{12}
\end{aligned}
$$

$$
\overrightarrow{C A}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \quad \left\lvert\, \begin{aligned}
|\overrightarrow{\mathrm{CA}}| & =\sqrt{1^{2}+0^{2}+1^{2}} \\
& =\sqrt{2}
\end{aligned}\right.
$$

$$
|\overrightarrow{\mathrm{CA}}|^{2}+|\overrightarrow{\mathrm{BC}}|^{2}=|\overrightarrow{\mathrm{AB}}|^{2}
$$

$\therefore \triangle A B C$ is aright-angled triangle
(vi) $A B C D$ is the base of a square pyramid of side 2 units, and V is the vertex. The pyramid is symmetrical and has a height of 4 units. Calculate the acute angle between one of the slant edges and the base of the pyramid, to the nearest degree.

$\theta=71^{\circ}$ (to the nearest degree)
(vii) The medians of a triangle meet at a point. Prove that the medians divide each other in the ratio 2:1.

$$
\begin{aligned}
& \text { Let } \overrightarrow{O A}=\underset{\sim}{a}, \overrightarrow{O B}=\underset{\sim}{b} \\
& \overrightarrow{O X}=\frac{1}{2} \underset{\sim}{a} \overrightarrow{O Y}=\frac{1}{2} \underset{\sim}{b}
\end{aligned}
$$

Join $A Y$ and $B X$ meeting at Z, let $\overrightarrow{O Z}=\underset{\sim}{z}$
Let Z divide $B X$ in the ratio $m: n$

$$
\begin{gathered}
\underset{\overrightarrow{A Z}}{\overrightarrow{Z Y}}=\frac{m}{n} \\
n \overrightarrow{A Z}=m \overrightarrow{Z Y} \\
n(\underset{\sim}{z}-\underset{\sim}{a})=m\left(\frac{b}{2}-\underset{\sim}{z}\right) \\
(m+n) \underset{\sim}{z}=n \underset{\sim}{a}+\frac{m b}{2}
\end{gathered}
$$

Similarly Z divides $A Y$ in the ratio $m: n$

$$
\begin{aligned}
\text { i.e }(m+n) \underset{\sim}{z} & =n \underset{\sim}{b}+\frac{m a}{2} \\
\therefore n \underset{\sim}{a}+\frac{m b}{2} & =n \underset{\sim}{b}+\frac{m a}{2} \\
\left.\frac{m}{2} \underset{\sim}{b}-\underset{\sim}{a}\right) & =n(\underset{\sim}{b}-\underset{\sim}{a}) \\
\frac{m}{2} & =n \\
\frac{m}{n} & =\frac{2}{1}
\end{aligned}
$$

Thus the medians divide each other in the ratio 2:1

Exercise 5D; 1, 3, 4b, 6a, 7b, 10, 11, 12, 13a, 14, 16, 18, 20, 21
Exercise 5E; 1, 3, 5, 8, 9, 11

