$$
\begin{aligned}
x & =x_{1}+\lambda\left(x_{2}-x_{1}\right) \\
y & =y_{1}+\lambda\left(y_{2}-y_{1}\right) \\
\therefore \frac{x-x_{1}}{x_{2}-x_{1}} & =\frac{y-y_{1}}{y_{2}-y_{1}}=\lambda \quad \text { parametric equation of a line } \\
\left(y_{2}-y_{1}\right)\left(x-x_{1}\right) & =\left(x_{2}-x_{1}\right)\left(y-y_{1}\right) \\
y-y_{1} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \\
y-y_{1} & =m\left(x-x_{1}\right)
\end{aligned}
$$

e.g. Write a vector equation of the line passing through $(3,-5)$ and

$$
(-2,-8)
$$

$$
\binom{x}{y}=\binom{3}{-5}+\lambda\binom{5}{3} \quad\left(\begin{array}{c}
N O T \dot{E} \\
\text { cartsian equatior } \\
y=\frac{3}{5} x-\frac{34}{3}
\end{array}\right.
$$

$$
\boldsymbol{O} \boldsymbol{R}\binom{x}{y}=\binom{-2}{-8}+\lambda\binom{5}{3}
$$

notice the similarity to the slope

Recall from complex numbers, rotation of a vector 90° is multiplication by i

$$
\begin{aligned}
&\binom{\text { run }}{\text { rise }} \times i=(\text { run }+ \text { irise })(i) \\
&=(\text { irun }- \text { rise }) \\
&=\binom{\text { rise }}{\text { run }} \\
& \therefore\binom{a}{b} \perp\binom{-b}{a}
\end{aligned}
$$

and using the dot product

$$
\begin{gathered}
\binom{a}{b} \cdot\binom{-b}{a}=-a b+a b \\
=0 \\
\therefore\binom{a}{b} \perp\binom{-b}{a}
\end{gathered}
$$

(ii) Find a vector equation for the line $2 x+5 y-1=0$

(iii) Find the point of intersection of $2 x+y+1=0$ and $3 x+5 y-9=0$

$$
\begin{array}{rlrl}
\underset{\sim}{r} & =\binom{0}{-1}+\lambda\binom{1}{-2} & \Rightarrow \begin{aligned}
\lambda & =3+5 \mu \\
-1-2 \lambda & =-3 \mu
\end{aligned} \\
\underset{\sim}{r}=\binom{3}{0}+\mu\binom{5}{-3} & -1-2(3+5 \mu) & =-3 \mu \\
7 \mu & =-7 \\
\mu & =-1
\end{array}
$$

(iv) Find a vector equation for the line joining the points $(-1,1)$ and $(4,11)$. Use this to write parametric equations for any point on the line . Hence find the coordinates of the points where the line meets the parabola $y=x^{2}$

$$
\begin{array}{lc}
\underset{\sim}{r}=\binom{-1}{1}+\lambda\binom{1}{2} \\
x=-1+\lambda & y=x^{2} \\
y=1+2 \lambda & 1+2 \lambda=(-1+\lambda)^{2} \\
1+2 \lambda=1-2 \lambda+\lambda^{2} \\
\lambda^{2}-4 \lambda=0 \\
\lambda(\lambda-4)=0 \\
\lambda=0 \text { or } \lambda=4
\end{array}
$$

\therefore parabola meets the line at $(-1,1)$ and $(3,9)$

Vector Equation of a Line in 3D

The equation of the line that passes through A and B is given by;

$$
\underset{\sim}{r}=\underset{\sim}{a}+\underset{\sim}{d b}
$$

where: $\underset{\sim}{a}$ is any point on $A B$

$$
\underset{\sim}{b}=\overrightarrow{A B} \quad \text { (direction vector) }
$$

e.g. (i) find a vector equation of the line through $(1,2,3)$ and $(-2,7,4)$

$$
\underset{\sim}{r}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-5 \\
-1
\end{array}\right)
$$

(ii) What is its corresponding Cartesian equation?

$$
\frac{x-1}{3}=\frac{2-y}{5}=3-z
$$

(iii) 2020 Extension 2 HSC Question 13 b)

Consider the two lines in three dimensions given by

$$
\underset{\sim}{r}=\left(\begin{array}{c}
3 \\
-1 \\
7
\end{array}\right)+\lambda_{1}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \text { and } \underset{\sim}{r}=\left(\begin{array}{c}
3 \\
-6 \\
2
\end{array}\right)+\lambda_{2}\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)
$$

By equating components, find the point of intersection of the two lines.

$$
3+\lambda_{1}=3-2 \lambda_{2} \Rightarrow \lambda_{1}=-2 \lambda_{2}
$$

$$
-1+2 \lambda_{1}=-6+\lambda_{2}
$$

$$
-1-4 \lambda_{2}=-6+\lambda_{2}
$$

$$
5 \lambda_{2}=5
$$

$$
\lambda_{2}=1
$$

$$
7+\lambda_{1}=2+3 \lambda_{2}
$$

$$
7-2 \lambda_{2}=2+3 \lambda_{2}
$$

| substituting into the
 third component
 confirms that these
 lines intersect |
| :--- |\(\left(\begin{array}{l}x

y

z\end{array}\right)=\left($$
\begin{array}{c}3 \\
-6 \\
2\end{array}
$$\right)+\left($$
\begin{array}{c}-2 \\
1 \\
3\end{array}
$$\right)\).

$$
5 \lambda_{2}=5
$$

$$
\lambda_{2}=1
$$

(iv) Find the vector equation of the line that passes through $(-2,1,4)$ and is parallel to $\underset{\sim}{i}+\underset{\sim}{j}-2 \underset{\sim}{k}$

$$
\underset{\sim}{r}=\left(\begin{array}{c}
-2 \\
1 \\
4
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right)
$$

two lines are parallel if their direction vectors are scalar multiples
(v) Find the vector equation of a line that passes through $(0,2,3)$ and is perpendicular to $\underset{\sim}{i}-\underset{\sim}{j}+4 \underset{\sim}{x}$

$$
\begin{aligned}
& \left(\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right) \cdot\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 \\
& a-b+4 c=0 \\
& \left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\mu\left(\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right)
\end{aligned}
$$

two lines are perpendicular if the dot product of their direction vectors equal zero

Also the two lines must intersect

$$
\begin{aligned}
\lambda a & =\mu \\
2+\lambda b & =-\mu \\
3+\lambda c & =4 \mu
\end{aligned}
$$

$2+\lambda b=-\lambda a \Rightarrow \lambda=-\frac{2}{a+b}$
$3+\lambda c=4 \lambda a \Rightarrow \lambda=\frac{3}{4 a-c}$

$$
\frac{3}{4 a-c}=-\frac{2}{a+b}
$$

$$
3 a+3 b=-8 a+2 c
$$

$$
11 a+3 b-2 c=0
$$

$$
11 a-11 b+44 c=0
$$

$$
14 b-46 c=0
$$

let $c=7$
$\therefore b=23$ and $a=-5$

$$
b=\frac{23 c}{7}
$$

$$
\underset{\sim}{r}=\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
-5 \\
23 \\
7
\end{array}\right)
$$

if two lines have direction vectors $\underset{\sim}{b}$ and $\underset{\sim}{b}$ they are; parallel if $\underset{\sim}{b}=\mu \underset{\sim}{b}{\underset{\sim}{2}}^{b}, \mu \in \mathbb{R}$
perpendicular if $\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{b} \cdot \underset{\sim}{b}=0$ and the lines intersect skew if the lines are not parallel and do not intersect
$\begin{array}{r}\text { (vi) Show that } \\ \text { skewed lines } \\ \underset{\sim}{r} \\ \sim\end{array}=\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $\underset{\sim}{r}=\mu\left(\begin{array}{l}1 \\ 4 \\ 5\end{array}\right)$ are

$$
\begin{aligned}
1+\lambda & =\mu \ldots .(1) \\
3+\lambda & =4 \mu . .(2) \\
-1 & =5 \mu . .(3)
\end{aligned}
$$

need to show that there is no point of intersection
equate (1) and (3) equate (2) and (3)

$$
\mu=-\frac{1}{5} \quad 1+\lambda=-\frac{1}{5} \quad 3+\lambda=-\frac{4}{5}
$$

$$
\lambda=-\frac{6}{5} \quad \lambda=-\frac{19}{5} \neq-\frac{6}{5}
$$

thus the lines do not intersect and are not parallel \therefore the lines are skewed

Exercise 5F; 1, 2, 3a, 4b, 5ac, 7a, 9a, 11a, 12b, 14, 15b, 17, 18, 20, 21, 24, 25, 26

