Exponential Function

Differentiating Exponentials

$$
f(x)=a^{x} \quad f(x+h)=a^{x+h}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x}\left(a^{h}-1\right)}{h} \\
& =a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
\end{aligned}
$$

Let's look at this limit in a bit more detail

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{a^{h}-1}{h} & =\lim _{h \rightarrow 0} \frac{a^{0+h}-a^{0}}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =f^{\prime}(0) \\
& =\text { slope of tangent at } x=0
\end{aligned}
$$

Euler's Number (e)

e is an irrational number, it is defined as;

$$
\begin{aligned}
e & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\
e & \approx 2.718281828 \ldots
\end{aligned}
$$

The exponential function, base e, has a slope of 1 at $x=0$

$$
\begin{aligned}
\text { If } f(x) & =e^{x} \\
f^{\prime}(0) & =1 \\
\text { thus } f^{\prime}(x) & =e^{x}
\end{aligned}
$$

so the slope of the basic exponential function, base e, is equal to the height of the curve above the x-axis i.e. $f^{\prime}(x)=y$
e.g. (i) Find $e^{3}=20.086$ (to 3 dp)
(ii) Sketch $y=5-e^{-x}$

1. basic curve: $y=e^{x}$
2. reflect in y-axis
3. reflect in x-axis
4. shift up 5 units

Exercise 11A; 1, 2

Exercise 11B; 1aegh, 2ac, 3cf, 4c, 6b ii, 7ab, 9cf, 10ab

