Exponential Equations

$$
\begin{aligned}
& \text { ecg. (i) } 5^{x}=125 \\
& \underline{x=3} \\
& \text { (ii) } 4^{2 x+1}=\frac{1}{2 \sqrt{2}} \\
& \left(2^{2}\right)^{2 x+1}=2^{-\frac{3}{2}} \\
& 4 x+2=-\frac{3}{2} \\
& 4 x=-\frac{7}{2} \\
& x=-\frac{7}{8} \\
& \text { (iii) } 7^{x}=32 \\
& x=\log _{7} 32 \\
& =\frac{\log 32}{\log 7} \\
& =1.781 \text { (to } 3 \mathrm{dp} \text {) } \\
& \text { Change of base formula } \\
& \log _{a} x=\frac{\log _{b} x}{\log _{b} a} \\
& =1.781 \text { (to } 3 \mathrm{dp} \text {) }
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { (iv) } 3^{x} & =5^{x-2} & \text { (v) } 9^{x}-4\left(3^{x}\right)+3=0 \\
\log 3^{x} & =\log 5^{x-2} & & \text { let } m=3^{x} \\
x \log 3 & =(x-2) \log 5 & m^{2}=\left(3^{x}\right)^{2}=3^{2 x}=\left(3^{2}\right)^{x}=9^{x} \\
x(\log 3-\log 5) & =-2 \log 5 & m^{2}-4 m+3=0 \\
x & =\frac{2 \log 5}{\log 5-\log 3} & (m-3)(m-1)=0 \\
& =6.301 & m=3 \quad \text { or } m=1 \\
& & 3^{x}=3 \quad \text { or } 3^{x}=1 \\
& \therefore x=1 \quad \text { or } \quad x=0
\end{array}
$$

Inequations \& Continually Increasing or Decreasing Functions

When a function is applied to an inequation, the inequality sign;

* is maintained if the function is continually increasing
* is reversed if the function is continually decreasing
e.g. (i) $1<2^{x}<32$
$\log _{2} 1<\log _{2} 2^{x}<\log _{2} 32$

$$
0<x<5
$$

(ii) $\log _{3} x>2$

$$
\begin{array}{r}
3^{\log _{3} x}>3^{2} \\
x>9 \\
\hline
\end{array}
$$

Exercise 8E; 2eim, 3bhn, $4 \mathrm{dg}, 5 \mathrm{c}(\mathrm{i}, \mathrm{iv}), \mathbf{6 g}, 7 \mathrm{f}$, 11a, 12bce, 14a, 15ac

