Simple Harmonic Motion

A particle that moves back and forward in such a way that its acceleration at any instant is directly proportional to its distance from a fixed point, is said to undergo **Simple Harmonic Motion (SHM)**

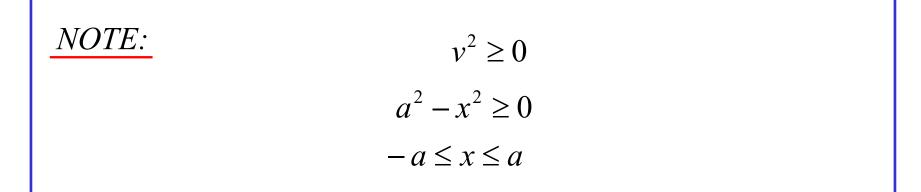
 $\ddot{x} \alpha x$ $\ddot{x} = kx$ $\ddot{x} = -n^2 x$ (constant needs to be negative)

If a particle undergoes SHM, then it obeys;

$$\ddot{x} = -n^2 x$$

$$v \frac{dv}{dx} = -n^2 x$$
$$\int_0^v v dv = -n^2 \int_a^x x dx$$

$$\begin{bmatrix} v^2 \end{bmatrix}_0^v = -n^2 \begin{bmatrix} x^2 \end{bmatrix}_a^x \quad (a = \text{amplitude})$$
$$v^2 = n^2(a^2 - x^2)$$
$$v = \pm n\sqrt{a^2 - x^2}$$



 \therefore Particle travels back and forward between x = -a and x = a

$$\frac{dx}{dt} = -n\sqrt{a^2 - x^2}$$
$$\frac{dt}{dx} = \frac{-1}{n\sqrt{a^2 - x^2}}$$
$$\int_0^t dt = \frac{1}{n} \int_a^x \frac{-1}{\sqrt{a^2 - x^2}} dx$$
$$t = \frac{1}{n} \left[\cos^{-1} \frac{x}{a} \right]_a^x$$
$$= \frac{1}{n} \left\{ \cos^{-1} \frac{x}{a} - \cos^{-1} \frac{x}{a} \right\}$$
$$= \frac{1}{n} \cos^{-1} \frac{x}{a}$$
$$nt = \cos^{-1} \frac{x}{a}$$
$$\frac{x}{a} = \cos nt$$
$$x = a \cos nt$$

If when t = 0;

 $x = \pm a$, choose - ve and cos⁻¹ x = 0, choose + ve and sin⁻¹

In general;

A particle undergoing SHM obeys

$$\ddot{x} = -n^2 x$$

 $v^2 = n^2(a^2 - x^2) \Rightarrow$ allows us to find path of the particle

$$x = a \cos nt$$
 OR $x = a \sin nt$

where a =amplitude

the particle has;

period :
$$T = \frac{2\pi}{n}$$

frequency : $f = \frac{1}{T}$

(time for one oscillation)

(number of oscillations per time period)

e.g. (*i*) A particle, *P*, moves on the *x* axis according to the law $x = 4\sin 3t$. a) Show that *P* is moving in SHM and state the period of motion. $x = 4\sin 3t$

$$\dot{x} = 12\cos 3t$$

 $\ddot{x} = -36\sin 3t$

$$=-9x$$

.: particle moves in SHM

$$T = \frac{2\pi}{3}$$

: period of motion is $\frac{2\pi}{3}$ seconds

b) Find the interval in which the particle moves and determine the greatest speed.

 \therefore particle moves along the interval $-4 \le x \le 4$

and the greatest speed is 12 units/s

(*ii*) A particle moves so that its acceleration is given by $\ddot{x} = -4x$ Initially the particle is 3cm to the right of *O* and traveling with a velocity of 6cm/s.

Find the interval in which the particle moves and determine the greatest acceleration.

$$v\frac{dv}{dx} = -4x$$

$$\int_{6}^{v} v dv = \int_{3}^{x} -4x dx$$

$$\begin{bmatrix} v^{2} \end{bmatrix}_{6}^{v} = -4 \begin{bmatrix} x^{2} \end{bmatrix}_{3}^{x}$$
when x
$$v^{2} - 36 = -4x^{2} + 36$$

$$v^{2} = -4x^{2} + 72$$
is greatest

But
$$v^2 \ge 0$$

 $-4x^2 + 72 \ge 0$
 $x^2 \le 18$
 $-3\sqrt{2} \le x \le 3\sqrt{2}$
hen $x = 3\sqrt{2}, \ddot{x} = -4(3\sqrt{2})$
 $= -12\sqrt{2}$

 \therefore greatest acceleration is $12\sqrt{2}$ cm/s²

(*iii*) 2012 Extension 1 HSC Q 13c) A particle is moving in a straight line according to the equation $x = 5 + 6\cos 2t + 8\sin 2t$

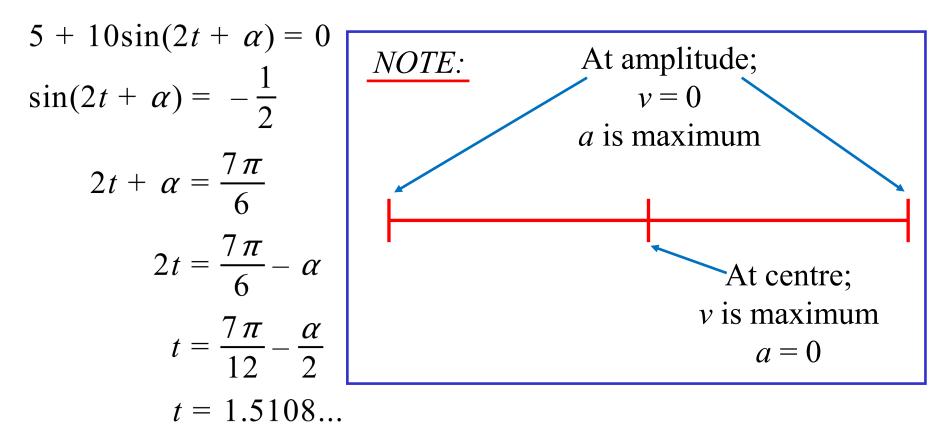
where x is the displacement in metres and t is the time in seconds

a) Prove that the particle is moving in SHM by showing that

6

 \therefore particle moves in *SHM* as it is in the form $\ddot{x} = -n^2 x$

b) When is the displacement of the particle zero for the first time?



∴ particle's displacement is first zero after 1.5 seconds

(*iv*) 2020 Extension 2 HSC Q 13a)

A particle is undergoing simple harmonic motion with period $\frac{\pi}{3}$. The central point of motion of the particle is at $x = \sqrt{3}$. When t = 0 the particle has its maximum displacement of $2\sqrt{3}$ from the central point of motion.

Find an equation for the displacement, x, of the particle in terms of t.

$$x = -\sqrt{3}$$

$$x = \sqrt{3}$$

$$x = \sqrt{3}$$

$$x = 3\sqrt{3}$$

Particle starts at the amplitude, so the equation is in the form

$$T = \frac{\pi}{3} \qquad c = \sqrt{3}$$

$$\frac{2\pi}{n} = \frac{\pi}{3} \qquad a = 2\sqrt{3}$$

$$x = a \cos nt + c$$

$$\therefore x = 2\sqrt{3} \cos 6t + \sqrt{3}$$

$$\therefore x = 2\sqrt{3} \cos 6t + \sqrt{3}$$

Exercise 6B; 1, 5, 7, 8, 10, 12, 13, 17, 18, 21, 23

(start with trig, prove SHM or are told)

Exercise 3C; 1, 4, 5b, 6b, 8, 9, 10, 11, 14 a, b(*ii*,*iv*), 16, 18, 19, 23 (start with $\ddot{x} = -n^2 x$)