Normal Approximation

to the Binomial

e.g. Estimate the probability that a school of 1200 students contains more than 150 left-handed students

Q: How would you solve such a problem?
A: One approach would be to take a large sample, say 50 students, and count the number of left handed students. From that information you could estimate the probability.

Say the sample contained 8 left handed students, we would estimate the probability of being left handed as;

$$
P(\text { left handed })=\frac{8}{50}=0.16
$$

Using binomial probability;
Let $X=$ number of left handed students

$$
X \sim \operatorname{Bin}(1200,0.16)
$$

$$
P(X>150)=1-P(X \leq 150)
$$

$$
=1-\binom{1200}{0}(0.84)^{1200}(0.16)^{0}-\binom{1200}{1}(0.84)^{1199}(0.16)^{1}-\ldots
$$

$$
\ldots-\binom{1200}{149}(0.84)^{1051}(0.16)^{149}-\binom{1200}{150}(0.84)^{1050}(0.16)^{150}
$$

even using the idea of complimentary events, it still involves 151 calculations

$$
\begin{aligned}
& =1-0.0003838 \\
& =0.9996(\text { to } 4 \mathrm{dp}) \\
& \hline
\end{aligned}
$$

The distribution's polygon would look like

- The distribution has a modal class somewhere in the middle of the range of values
- The distribution is symmetrical
- The frequency density tails off fairly rapidly as values move further away from the modal class
These are the features of a normal distribution

So what would have happened if we assumed our distribution was normal;
first we need to find the mean and variation

$$
\begin{aligned}
& X \sim \operatorname{Bin}(1200,0.16) \quad \mu=n p \quad \sigma^{2}=n p(1-p) \\
& =(1200)(0.16)=(1200)(0.16)(0.84) \\
& =192=161.28 \\
& X \sim N(192,161.28) \Leftrightarrow Z \sim N(0,1) \text { where } Z=\frac{X-\mu}{\sigma} \\
& P(X>150)=1-P(X \leq 150) \\
& =1-P\left(Z \leq \frac{150-192}{\sqrt{161.28}}\right) \\
& =1-\Phi(-3.31) \\
& \text { = } 1-0.0046654 \\
& =0.9995 \text { (to } 4 \mathrm{dp} \text {) } \\
& \text { \% difference to } \\
& \text { binomial answer } \\
& \frac{0.999616326-0.99953346}{0.999616326} \times \frac{100}{1}
\end{aligned}
$$

When is it okay to approximate a binomial distribution with a normal distribution?

Keep in mind the three key features of a normal distribution

- The distribution has a modal class somewhere in the middle of the range of values
- The distribution is symmetrical
- The frequency density tails off fairly rapidly as values move further away from the modal class
Let's take a look at some binomial distributions;

\boldsymbol{n}	\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{n} \boldsymbol{p}$	$\boldsymbol{n q}$	Øor 図
10	0.125	0.875	1.25	8.75	\boxtimes
20	0.125	0.875	2.50	17.50	\boxtimes
30	0.125	0.875	3.75	26.25	\boxtimes
40	0.125	0.875	5.00	35.00	$\square \boxtimes$
50	0.125	0.875	6.25	43.75	\boxtimes

.2.25 $\quad p=0.5$	n	p	q	$n p$	$n q$	\square or 図
	10	0.5	0.5	5.00	5.00	区
,	20	0.5	0.5	10.00	10.00	\square
,	30	0.5	0.5	15.00	15.00	\square
)	40	0.5	0.5	20.00	20.00	V
	50	0.5	0.5	25.00	25.00	V

As a general rule;

> for a satisfactory approximation $\quad n p>5$ and $n q>5$

We are approximating the area under the polygon with bins 1 unit apart, so for the interval $a \leq x \leq b$, the area under the polygon is actually

$$
\int_{a-0.5}^{b+0.5} f(x) d x
$$

(this might be more obvious if you think of the histogram)

continuity correction for small samples

for small $n ; \quad P(a \leq X \leq b)$ use $P(a-0.5 \leq X \leq b+0.5)$

e.g. 2021 Extension 2 HSC Question 12b)

When a particular biased coin is tossed, the probability of obtaining a head is $\frac{3}{5}$. The coin is tossed 100 times.

Let X be the random variable representing the number of heads obtained. This random variable would have a binomial distribution.
(i) Find the expected value, $E(X)$.

$$
\begin{aligned}
E(X) & =n p \\
& =100 \times \frac{3}{5} \\
& =60
\end{aligned}
$$

(ii) By finding the variance, $\operatorname{Var}(X)$, show that the standard deviation of X is approximately 5

$$
\begin{aligned}
\operatorname{Var}(X) & =n p(1-p) & \sigma & =\sqrt{\operatorname{Var}(X)} \\
& =100 \times \frac{3}{5} \times \frac{2}{5} & & =\sqrt{24} \\
& =24 & & =4.898979
\end{aligned}
$$

(iii) By using a normal approximation, find the approximate probability that X is between 55 and 65 .
$X \sim \operatorname{Bin}(100,0.6)$
$X \sim \mathrm{~N}(60,24) \Leftrightarrow Z \sim \mathrm{~N}(0,1)$

$$
\begin{aligned}
P(55 \leq X \leq 65) & \approx P\left(\frac{55-60}{5} \leq Z \leq \frac{65-60}{5}\right) \\
& =P(-1 \leq Z \leq 1) \\
& =0.68
\end{aligned}
$$

Exercise 17C; 1, 2adg, 3, 4, 5, 7, 9, 11, 12

