Sequences \& Series

Definitions

Sequence (Progression): a set of numbers that follow a pattern
Series: a set of numbers added together
a:the first term
$\underline{T_{n}}$: the nth term
$\underline{S_{n}}$: the sum of the first n terms
e.g. $T_{n}=n^{2}+2$, find;
(i) $T_{5}=5^{2}+2$
$=27$
(ii) whether 42 is a term in the sequence

$$
\begin{aligned}
42 & =n^{2}+2 \\
n^{2} & =40 \\
n & =\sqrt{40}, \text { which is not an integer }
\end{aligned}
$$

Thus 42 is not a term

Recursive Formulae: defines the series in terms of previous terms
A recursive formula designates the;

* starting term or terms
* an expression for the general term containing the previous term(s)
e.g. (i) Write down the first four terms of the sequence defined by

$$
T_{n}=T_{n-1}+3 \text { for } n \geq 2, T_{1}=4 \quad \frac{\frac{T}{1}=4}{\frac{T_{2}=4}{}+3=7}
$$

(ii) The Lucas numbers are defined as;

$$
\boldsymbol{L}_{n}=\boldsymbol{L}_{n-1}+\boldsymbol{L}_{n-2} \text { for } n \geq 3, \boldsymbol{L}_{1}=2, \boldsymbol{L}_{2}=1
$$

find the first five Lucas numbers

$$
2,1,3,4,7
$$

Arithmetic Series

An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, \boldsymbol{d}.

$$
\begin{aligned}
d & =T_{2}-a \\
& =T_{3}-T_{2} \\
d & =T_{n}-T_{n-1}
\end{aligned}
$$

$T_{n}=T_{n-1}+d \quad$ (recursive formula)

$$
\begin{aligned}
& T_{1}=a \\
& T_{2}=a+d \\
& T_{3}=a+2 d \\
& \hline T_{n}=a+(n-1) d
\end{aligned}
$$

e.g.(i) If $T_{3}=9$ and $T_{7}=21$, find;
the general term.

$$
\begin{aligned}
& a+2 d=9 \\
& \frac{a+6 d}{}=21 \\
& \hline 4 d=12 \\
& d=3 \therefore a=3
\end{aligned}
$$

$$
\begin{aligned}
T_{n} & =3+(n-1) 3 \\
& =3+3 n-3 \\
& =3 n
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
T_{100} & =3(100) \\
& =300
\end{aligned}
$$

(iii) the first term greater than 500

$$
\begin{aligned}
& T_{n}>500 \\
& 3 n>500 \\
& n>\frac{500}{3} \\
& \therefore n=167 \\
& T_{167}=501, \text { is the first term }>500 \\
& \hline
\end{aligned}
$$

When plotted on a number plane, the graph of an arithmetic sequence is a linear function

Exercise 1A; 2aceg, 3bdf, 5acdf, 7bef, 12ac, 13bd, 14c, 16, 17aceg, 18, 19, 20

Exercise 1B; 7adg, 9c, 10be, 11, 13ac, 16, 17b, 18b, 19acf, 20

