Introduction to Vectors

Translation of Graphs

e.g. The parabola $y=x^{2}$ is translated 2 units to the right and 1 unit up

Find the new equation of the parabola

We found the new equation using a horizontal and a vertical translation
These two translations can be combined into one displacement vector
Every point on the parabola can be moved into its new position by sliding along the same displacement vector

$$
\binom{X}{Y}=\binom{x}{y}+\binom{2}{1}
$$

Using parametrics;

$$
\begin{array}{rl}
\text { etrics; } \left.\quad \begin{array}{c}
X \\
Y
\end{array}\right) & =\binom{t}{t^{2}}+\binom{2}{1} \\
\binom{X}{Y} & =\binom{t+2}{t^{2}+1} \\
X=t+2 & Y=t^{2}+1 \\
t=X-2 \quad Y=(X-2)^{2}+1
\end{array}
$$

Definitions

$\overrightarrow{P Q}$ is the displacement vector joining P to Q
$\underline{\boldsymbol{P}}$ is the tail of the vector
\boldsymbol{Q} is the head of the vector
The other notations for a vector are \mathbf{p} or p
All vectors can be uniquely identified by its length (magnitude) and the angle it makes with the horizontal (direction)

$$
|\underset{\sim}{p}|=|\overrightarrow{\mathrm{PQ}}|=\text { magnitude of vector }
$$

Opposite (negative) vectors are directed in opposite directions

$$
\text { i.e. if } \overrightarrow{\mathrm{PQ}}=\underset{\sim}{p} \text { then } \overrightarrow{\mathrm{QP}}=-\underset{\sim}{p}
$$

Parallel vectors have the same slope

$$
\text { i.e. } \overrightarrow{P Q} \| \overrightarrow{Q P}
$$

Zero vector, $\overrightarrow{\mathrm{PP}}$, is the single point P, it is the only vector to have no magnitude and no direction and is thus parallel to all vectors.

Scalar is a magnitude without direction i.e. its just a real number $\lambda \underset{\sim}{p}$ where λ is a scalar, is a vector with direction of $\underset{\sim}{p}$ and length $\lambda|\underset{\sim}{p}|$

Position vector is the displacement vector whose tail is the origin

Addition and Subtraction

of Vectors

To add two vectors, place them "head to tail"

Addition of vectors is commutative

$+$

To subtract two vectors, place the vectors "head to head" (or add the negative vector)

NOTE: the vectors $a+b$ and $a-b$ are the diagonals of the parallelogram created $\widetilde{b y}$ the vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$

Multiplication of Vectors

by Scalars

Multiplying a vector by a scalar, λ enlarges the magnitude of the vector by a factor of λ

$$
-\frac{1}{2} a
$$

NOTE: all of these vectors are parallel
e.g. $\triangle A B C$ is a triangle with $\overrightarrow{\mathrm{AB}}=a$ and $\overrightarrow{\mathrm{AC}}=c$ P and Q are midpoints of $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ respectively R is a point on $\overrightarrow{B C}$ such that $\overrightarrow{R C}=2 \times \overrightarrow{B R}$

(i) Express $\overrightarrow{\mathrm{BC}}$ and $\overrightarrow{\mathrm{PQ}}$ in terms of $\underset{\sim}{a}$ and $\underset{\sim}{c}$

$$
\left.\begin{array}{rlrl}
\overrightarrow{\mathrm{BC}} & =\overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{AB}} & \text { (head minus tail) } & \overrightarrow{\mathrm{PQ}}
\end{array}=\frac{1}{2} \overrightarrow{\mathrm{AC}}-\frac{1}{2} \overrightarrow{\mathrm{AB}}\right)
$$

(ii) Compare the vectors $\overrightarrow{\mathrm{BC}}$ and $\overrightarrow{\mathrm{PQ}}$

$$
\overrightarrow{\mathrm{PQ}}=\frac{1}{2} \overrightarrow{\mathrm{BC}}
$$

(iii) What geometric property of a triangle does (ii) demonstrate? The line joining the midpoints of two sides of a triangle is parallel to the third side (and half its length)
(iv) Express the vectors $\overrightarrow{\mathrm{BR}}$ and $\overrightarrow{\mathrm{RC}}$ in terms of $\underset{\sim}{a}$ and $\underset{\sim}{c}$

$$
\begin{aligned}
\overrightarrow{\mathrm{BR}} & =\frac{1}{3} \overrightarrow{\mathrm{BC}} & \overrightarrow{\mathrm{RC}} & =\frac{2}{3} \times \overrightarrow{\mathrm{BC}} \\
& =\frac{1}{3}(\underset{\sim}{c}-\underset{\sim}{a}) & & \left.=\frac{2}{3} \underset{\sim}{c}-\underset{\sim}{a}\right)
\end{aligned}
$$

(v) Show that $\overrightarrow{\mathrm{AR}}=\frac{1}{3}(2 \underset{\sim}{a}+\underset{\sim}{c})$

$$
\begin{aligned}
\overrightarrow{\mathrm{AR}} & =\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BR}} \\
& =\underset{\sim}{a}+\frac{1}{3}(\underset{\sim}{c}-\underset{\sim}{a}) \\
& =\underset{\sim}{a}+\frac{1}{3} \underset{\sim}{c}-\frac{1}{3} \underset{\sim}{a} \\
& =\frac{2}{3} \underset{\sim}{a}+\frac{1}{3} \underset{\sim}{c}=\frac{1}{3}(2 \underset{\sim}{a}+\underset{\sim}{c})
\end{aligned}
$$

Exercise 8A; 1a, 2, 5a, 7, 8, 9, 10, 11, 13, 15, 16, 17, 20

