Geometric Proofs

Things to keep in mind when using vectors in a geometric proof * choose a vertex or other key point to represent the origin

* sum (or difference) of vectors creates a triangle * parallel vectors are multiples of each other
* the angle between vectors can be found using the dot product
* perpendicular vectors have a dot product equal to zero
* vectors can be written as their position vector using "head minus tail"
e.g. Prove that the diagonals of a rhombus are perpendicular
$O A B C$ is a rhombus
Let $\overrightarrow{\mathrm{OA}}=\underset{\sim}{a}$ and $\overrightarrow{\mathrm{OC}}=\underset{\sim}{c}$
Diagonals are $O B$ and $A C$

$$
\begin{aligned}
\overrightarrow{\mathrm{OB}} & =\underset{\sim}{a}+\underset{\sim}{c} \\
\overrightarrow{\mathrm{AC}} & =\underset{\sim}{c}-\underset{\sim}{a} \\
\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{AC}} & =\underset{\sim}{a}+\underset{\sim}{c} \cdot \underset{\sim}{c} \cdot(\underset{\sim}{c}-\underset{\sim}{a}) \\
& =\underset{\sim}{c} \cdot \underset{\sim}{c}-\underset{\sim}{a} \cdot \underset{\sim}{a} \\
& =\left.\underset{\sim}{|c|}\right|^{2}
\end{aligned}
$$

however $|\underset{\sim}{a}|=|\underset{\sim}{c}|$
(sides in a rhombus are $=$)
so $\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{AC}}=0$
$\therefore \mathrm{OB} \perp \mathrm{AC}$
(ii) Prove Pythagoras’ Theorem
$O A B$ is a right angled triangle
Let $\overrightarrow{\mathrm{OA}}=\underset{\sim}{a}$ and $\overrightarrow{\mathrm{OB}}=\underset{\sim}{b}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}}=\underset{\sim}{b}-\underset{\sim}{a} \\
& O A^{2}+O B^{2} \\
&=|\underset{\sim}{a}|^{2}+|\underset{\sim}{b}|^{2}
\end{aligned}
$$

$$
\begin{aligned}
A B^{2} & =|\underset{\sim}{b}-\underset{\sim}{a}|^{2} \\
& =(\underset{\sim}{b}-\underset{\sim}{a}) \cdot(\underset{\sim}{b}-\underset{\sim}{a}) \\
& =\underset{\sim}{b} \cdot \underset{\sim}{b}-2 \underset{\sim}{a} \cdot \underset{\sim}{b}+\underset{\sim}{a} \cdot \underset{\sim}{a}
\end{aligned}
$$

however $O A \perp O B$

$$
\begin{array}{r}
\text { so } \underset{\sim}{a B^{2}}=\underset{\sim}{b} \cdot \underset{\sim}{b} \cdot \underset{\sim}{b}+\underset{\sim}{b}=0 \\
\\
=|\underset{\sim}{|b|}|^{2}+|\underset{\sim}{\mid a}|^{2}
\end{array}
$$

(iii) $A B C D$ is a quadrilateral, P, Q, R and S are midpoints of the lines $A C, B D, A D$ and $B C$ respectively. What type of quadrilateral is $P R Q S$? treat A as the origin
Let $\overrightarrow{\mathrm{AB}}=\underset{\sim}{u}, \overrightarrow{\mathrm{AC}}=\underset{\sim}{v}, \overrightarrow{\mathrm{AD}}=\underset{\sim}{w}$

$$
\overrightarrow{\mathrm{AP}}=\frac{1}{2} \overrightarrow{\mathrm{AC}}=\frac{1}{2} \underset{\sim}{v}
$$

$$
\overrightarrow{\mathrm{BQ}}=\frac{1}{2} \overrightarrow{\mathrm{BD}}=\frac{1}{2}(\underset{\sim}{w}-\underset{\sim}{u})
$$

$$
\overrightarrow{\mathrm{PR}}=\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{AR}} \quad C_{C}
$$

$$
\overrightarrow{\mathrm{AR}}=\frac{1}{2} \overrightarrow{\mathrm{AD}}=\frac{1}{2} \underset{\sim}{w}
$$

$$
\overrightarrow{\mathrm{BS}}=\frac{1}{2} \overrightarrow{\mathrm{AC}}=\frac{1}{2}(\underset{\sim}{v}-\underset{\sim}{u})
$$

$$
\begin{aligned}
\overrightarrow{\mathrm{SQ}}= & \overrightarrow{\mathrm{SB}}+\overrightarrow{\mathrm{BQ}} \\
= & \frac{1}{2}(\underset{\sim}{u}-\underset{\sim}{v})+\frac{1}{2}(\underset{\sim}{w}-\underset{\sim}{u})=\frac{1}{2}(\underset{\sim}{\sim}-\underset{\sim}{v}) \\
& \quad \therefore \overrightarrow{\mathrm{PR}}=\overrightarrow{\mathrm{SQ}}
\end{aligned}
$$

Thus $P R Q S$ is a parallelogram as a pair of
opposite sides are both equal and parallel

